
Introductory OpenFOAM® Course

Joel Guerrero
University of Genoa, DICAT

Dipartimento di Ingegneria delle Costruzioni, dell'Ambiente e del Territorio

From 2nd to 6th July, 2012

Your Lecturer

Joel GUERRERO

joel.guerrero@unige.it

	
	

guerrero@wolfdynamics.com
	

Acknowledgements

These slides are mainly based upon personal experience, OpenFOAM®
user guide, OpenFOAM® programmer’s guide, and presentations from
previous OpenFOAM® training sessions and OpenFOAM® workshops.

We gratefully acknowledge the following OpenFOAM® users for their
consent to use their training material:
•  Hrvoje Jasak. Wikki Ltd.
•  Hakan Nilsson. Department of Applied Mechanics, Chalmers

University of Technology.
•  Eric Paterson. Applied Research Laboratory Professor of Mechanical

Engineering, Pennsylvania State University.
•  Tommaso Lucchini. Department of Energy, Politecnico di Milano.

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU

Running in parallel

The method of parallel computing used by OpenFOAM is known as
domain decomposition, in which the geometry and associated fields are
broken into pieces and distributed among different processors.
•  To decompose the domain we use the decomposePar utility. You also

will need a dictionary named decomposeParDict which is located in
the system directory of the case.

•  OpenFOAM uses the public domain OpenMPI implementation of the
standard message passing interface (MPI). Each processor runs a
copy of the solver on a separate part of the domain mesh.

•  Finally the solution is reconstructed to obtain the final result. This is
done by using the reconstrucPar utility.

Running in parallel

Domain Decomposition
•  The mesh and fields are decomposed using the decomposePar utility.
•  The main goal is to break up the domain with minimal effort but in

such a way to guarantee a fairly economic solution.
•  The geometry and fields are broken up according to a set of

parameters specified in a dictionary named decomposeParDict that
must be located in the system directory of the case.

•  In the decomposeParDict file the user must set the number of
domains which the case should be decomposed into: usually it
corresponds to the number of cores available for the calculation.

•  numberOfSubdomains 2;
•  The user has a choice of six methods of decomposition, specified by

the method keyword.
•  On completion, a set of subdirectories will have been created, one for

each processor. The directories are named processorN where N = 0,
1, 2, … Each directory contains the decomposed fields.

Running in parallel

Domain Decomposition
•  simple: simple geometric decomposition in which the domain is split

into pieces by direction.
•  hierarchical: Hierarchical geometric decomposition which is the

same as simple except the user specifies the order in which the
directional split is done.

•  scotch: requires no geometric input from the user and attempts to
minimize the number of processor boundaries (similar to metis).

•  manual: Manual decomposition, where the user directly specifies the
allocation of each cell to a particular processor.

•  metis: requires no geometric input from the user and attempts to
minimize the number of processor boundaries.

•  parMetis: MPI-based version of METIS with extended functionality.

Not supported anymore

Running in parallel
We will now run a case in parallel. From now on follow me.
•  Go to the $path_to_openfoamcourse/parallel_tut/rayleigh_taylor

folder. In the terminal type:
•  cd $path_to_openfoamcourse/parallel_tut/rayleigh_taylor
•  blockMesh
•  checkMesh
•  cp 0/alpha1.org 0/alpha1
•  funkySetFields -time 0

(if you do not have this tool, copy the files located in the directory
0.init to the directory 0)

•  decomposePar
•  mpirun -np 8 interFoam -parallel

(Here I am using 8 processors. In your case, use the maximum
number of processor available in your laptop, for this you will
need to modify the decomposeParDict dictionary located in the
system folder)

Running in parallel
We will now run a case in parallel. From now on follow me.
•  Go to the $path_to_openfoamcourse/parallel_tut/rayleigh_taylor

folder. In the terminal type:
•  paraFoam -builtin

To directly post-process the decomposed case or
•  reconstructPar
•  paraFoam

To post-process the reconstructed case. More about post-processing in
parallel in the next slides.
•  Notice the syntax used to run OpenFOAM in parallel:

•  mpirun -np 8 solver_name -parallel
where mpirun is a shell script to use the mpi library, -np is the number
of processors you want to use, solver_name is the OpenFOAM solver
you want to use, and -parallel is a flag you shall always use if you
want to run in parallel.

Running in parallel

•  Almost all OpenFOAM utilities for post-processing can be run in
parallel. The syntax is as follows:

•  mpirun -np 2 utility -parallel
(notice that here I am using 2 processors)

•  When post-processing cases that have been run in parallel the user
has three options:
•  Reconstruction of the mesh and field data to recreate the

complete domain and fields.
•  reconstructPar
•  paraFoam

	

Running in parallel

•  Post-processing each decomposed domain individually
•  paraFoam -case processor0

To load all processor folders, the user will need to manually create the
file processorN.OpenFOAM (where N is the processor number) in each
processor folder and then load each file into paraFoam.

•  Reading the decomposed case without reconstructing them. For
this you will need to:
•  paraFoam -builtin (this will use a paraFoam version that

will let you read a decomposed case or read reconstructed
case)

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU

Running in a cluster using a job scheduler

•  Running OpenFOAM in a cluster is similar to running in a normal
workstation with shared memory.

•  The only difference is that you will need to launch your job using a job
scheduler.

•  Common job schedulers are:
•  Terascale Open-Source Resource and Queue Manager

(TORQUE).
•  Simple Linux Utility for Resource Management (SLURM).
•  Portable Batch System (PBS).
•  Sun Grid Engine (SGE).
•  Maui Cluster Scheduler.

•  Ask your system administrator the job scheduler installed in your
system. Hereafter I will assume that you will run using PBS.

Running in a cluster using a job scheduler

•  To launch a job in a cluster with PBS, you will need to write a small
script file where you tell to the job scheduler the resources you want
to use and what you want to do.

#!/bin/bash

Simple PBS batch script that reserves 8 nodes and runs a
MPI program on 64 processors (8 processor on each node)
The walltime is 24 hours !

#PBS -N openfoam_simulation //name of the job
#PBS -l nodes=8:nehalem,walltime=24:00:00 //max execution time
#PBS -m abe -M joel.guerrero@unige.it //send an email as soon as the job is launch or terminated

cd /lustre/ws1/ws/xicjoegi-joegi-0/xicjoegi-1.7.x/building/les_simu //go to this directory

#decomposePar //decompose the case, this line is commented

mpirun -np 64 pimpleFoam -parallel > log //run parallel openfoam

The green lines are not PBS comments. PBS comments use the numeral
character (#)

Running in a cluster using a job scheduler

•  To launch your job you need to use the qsub command (part of the
PBS job scheduler). The command will send your job to queue.
•  qsub script_name

•  Remember, running in a cluster is no different from running in your

workstation. The only difference is that you need to schedule your
jobs.

•  Depending on the system current demand of resources, the resources
you request and your job priority, sometimes you can be in queue for
hours, even days, so be patient and wait for your turn.

Today’s lecture

1.  Running in parallel
2.  Running in a cluster using a job scheduler
3.  Running with a GPU

Running with a GPU

•  The official release of OpenFOAM (version 2.1.x), does not support
GPU computing.

•  To test OpenFOAM’s GPU capabilities, you will need to install the
latest extend version (OpenFOAM-1.6-ext).

•  To use your GPU with OpenFOAM, you will need to install the cufflink
library. There are a few more options available, but I do like this one.

•  You can download cufflink from the following link (as for 1/Jul/2012) :
http://code.google.com/p/cufflink-library/

•  Additionally, you will need to install the following libraries:
•  Cusp: which is a library for sparse linear algebra and graph

computations on CUDA.
http://code.google.com/p/cusp-library/

•  Thrust: which is a parallel algorithms library which resembles the
C++ Standard Template Library (STL).
http://code.google.com/p/thrust/

Running with a GPU

What is cufflink?
cufflink stands for Cuda For FOAM Link. cufflink is an open source library
for linking numerical methods based on Nvidia's Compute Unified Device
Architecture (CUDA™) C/C++ programming language and
OpenFOAM®. Currently, the library utilizes the sparse linear solvers of
Cusp and methods from Thrust to solve the linear Ax = b system derived
from OpenFOAM's lduMatrix class and return the solution vector. cufflink
is designed to utilize the course-grained parallelism of OpenFOAM® (via
domain decomposition) to allow multi-GPU parallelism at the level of the
linear system solver.
Cufflink Features
•  Currently only supports the OpenFOAM-extend fork of the

OpenFOAM code.
•  Single GPU support.
•  Multi-GPU support via OpenFOAM's course grained parallelism

achieved through domain decomposition (experimental).

Running with a GPU

Cufflink Features
•  A conjugate gradient solver based on Cusp for symmetric matrices (e.g.

pressure), with a choice of
•  Diagonal Preconditioner.

•  Sparse Approximate Inverse Preconditioner.

•  Algebraic Multigrid (AMG) based on Smoothed Aggregation
Precondtioner.

•  A bi-conjugate gradient stabilized solver based on CUSP for asymmetric
matrices (e.g. velocity, epsilon, k), with a choice of

•  Diagonal Preconditioner.

•  Sparse Approximate Inverse Preconditioner.
•  Single Precision (sm_10), Double precision (sm_13), and Fermi Architecture

(sm_20) supported. The double precision solvers are recommended over
single precision due to known errors encountered in the Smoothed
Aggregation Preconditioner in Single precision.

Running with a GPU

Running cufflink in OpenFOAM extend
Once the cufflink library has been compiled, in order to use the library in OpenFOAM
one needs to include the line

 libs ("libCufflink.so");

in your controlDict dictionary. In addition, a solver must be chosen in the fvSolution
dictionary:

 p
 {
 solver cufflink_CG;
 preconditioner none;
 tolerance 1e-10;
 //relTol 1e-08;
 maxIter 10000;
 storage 1;//COO=0 CSR=1 DIA=2 ELL=3 HYB=4 all other numbers use default CSR
 gpusPerMachine 2;//for multi gpu version on a machine with 2 gpus per machine node
 AinvType ;
 dropTolerance ;
 linStrategy ;
 }

This particular setup uses an un-preconditioned conjugate gradient solver on a single
GPU; compressed sparse row (CSR) matrix storage; 1e-8 absolute tolerance and 0
relative tolerance; with a maximum number of inner iterations of 10000.

Mesh generation using open source tools

Additional tutorials
In the folder $path_to_openfoamcourse/parallel_tut you will find many
tutorials, try to go through each one to understand how to setup a parallel case in
OpenFOAM.

Thank you for your attention

Hands-on session

In the course’s directory ($path_to_openfoamcourse) you will find many
tutorials (which are different from those that come with the OpenFOAM
installation), let us try to go through each one to understand and get functional
using OpenFOAM.

If you have a case of your own, let me know and I will try to do my best to help
you to setup your case. But remember, the physics is yours.

