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The combination of lightweight flexible membrane design and favorable control char-

acteristics renders tethered inflatable airplanes an attractive option for high-altitude

wind power systems. This paper presents an analysis of the flight dynamics and sta-

bility of such a Kiteplane operated on a single-line tether with a two-line bridle. The

equations of motion of the rigid body model are derived by Lagrange’s equation, which

implicitly accounts for the kinematic constraints due to the bridle. The tether and bri-

dle are approximated by straight line elements. The aerodynamic force distribution is

represented by 4 discrete force vectors according to the major structural elements of

the Kiteplane. A case study comprising analytical analysis and numerical simulation

reveals, that for the specific kite design investigated, the amount and distribution of

lateral aerodynamic surface area is decisive for flight dynamic stability. Depending

on the combination of wing dihedral angle and vertical tail plane size, the pendulum

motion shows either diverging oscillation, stable oscillation, converging oscillation, ape-

riodic convergence, or aperiodic divergence. It is concluded that dynamical stability

requires a small vertical tail plane and a large dihedral angle to allow for sufficient

sideslip and a strong sideslip response.
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NOMENCLATURE

A = aspect ratio

c = mean aerodynamic cord, m

CD = aerodynamic drag coefficient

CL = aerodynamic lift coefficient

Cmac
= pitch moment coefficient

CX = aerodynamic force coefficient in X

CY = aerodynamic force coefficient in Y

D = aerodynamic drag, N

d = tether damping constant, Ns/m

e = Oswald factor

Fa = aerodynamic force vector, N

FB = bridle force, N

FGS = ground station force, N

FZ = gravitational force, N

g = gravitational acceleration vector, m/s2

I = inertia matrix, kgm2

i = angle of incidence, deg

k = tether spring constant, N/m

L = aerodynamic lift, N

l = length, m

Ma = aerodynamic moment vector, Nm

mg = kite mass excluding confined air, kg

mk = kite mass, kg

Mwac
= wing pitching moment, Nm

Q = generalized force, N

q = genralized generalized coordinate

r = position vector, m

S = surface area, m2
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T = kinetic energy, J

TBA = transformation matrix for frame A to B

V = potential energy, J

v = velocity, m/s

v = velocity vector, m/s

X = aerodynamic force in X direction, N

X,Y, Z = Cartesian axis system

x, y, z = Cartesian coordinates, m

Y = aerodynamic force in Y direction, N

y = spanwise MAC location, m

yb = bridle separation, m

α = angle of attack, deg

β = sideslip angle, deg

Γ = dihedral angle, deg

δ = bridle geometry angle, deg

ε = downwash angle, deg

θ = pitch angle, deg

θT = pendulum mode angle, deg

Λ = sweep angle, deg

λ = wing taper ratio

ζ = aerodynamic element orientation angle, deg

ρ = air density, kg/m3

φ = zenith angle, deg

χ = bridle angle, deg

ψ = azimuth angle, deg

ω = angular velocity vector, rad/s
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Subscripts

ac = aerodynamic center

app = apparent

cg = center of gravity

f = vertical tail fin

HT = horizontal tail

l = local

LE = leading edge

lw = left wing

rw = right wing

T = tether

t = tail

V T = vertical tail

W = wind

w = wing

Superscripts

a = aerodynamic reference frame

B = body reference frame

E = Earth reference frame

T = tether reference frame

I. Introduction

K
ites are among the earliest man-made flying objects in history and have been used for a

wide variety of purposes [1]. Especially from 1860 to 1910, kites emerged as an important

technology for scientific and technical applications such as in meteorology, aeronautics, wireless

communication and aerial photography. Although the airplane has subsequently taken over these

application areas, kites have made a comeback as major recreational device devices. The increasing

shift toward sustainable energy generation and propulsion has triggered a renewed interest in kites
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for industrial applications, a major driver being the potential of the technology to efficiently exploit

the abundant wind at higher altitudes [2, 3]. Using kites for power generation has first been proposed

and systematically analyzed by Loyd in 1980 [4], however, subsequent research and development

activities were low before the presentation of the ‘Laddermill’ concept, by Ockels in 1996 [5, 6].

Since then, the number of institutions actively involved in kite power has increased rapidly, with

several multi-million dollar projects [7–9].

Various concepts and ideas have been proposed to exploit the wind currents at higher altitudes

[10, 11]. One of the concepts is the pumping kite concept [12, 13], where the tether, pulled by

lifting bodies, drives a drum that is connected to a generator to produce electricity. By alternating

between a high power producing upstroke and a low power consuming downstroke, net energy is

generated. The main advantages of such a system over conventional wind turbines are the higher

operational flexibility and the ability to exploit the stronger and steadier wind at higher altitudes.

However, the high degree of freedom in the design and operation of kite power systems also leads

to control challenges. Compared to an airplane, the flight dynamics of a kite are constrained by

the tether and bridle system. However, this does not mean that kites are more stable and easier to

control. Research indicates that the presence of a tether may raise stability issues [14–16].

A successful pumping kite power system requires a kite that is not only agile and aerodynam-

ically efficient to maximize the power output, but also stable to minimize the control effort. In

addition, a low lift mode - in kite terminology called depower - is necessary to implement a swift

low power consuming downstroke. Some kite types are naturally stable on a single-line, such as box

kites, sled kites, delta kites and some ram-air kites, but neither meets the full set of requirements.

The Kiteplane developed at the ASSET chair of Delft University of Technology and displayed in

Fig. 1, is specifically designed to operate in a pumping kite concept [17–19]. The Kiteplane is

an airplane shaped kite constructed with inflatable beams and canopy surfaces. It features a bri-

dled wing, efficient aerodynamics for a kite, and easy angle of attack control. However, flight tests

have indicated that the prototype of 2009 suffers from a pendulum instability, which is an unstable

oscillation in the crosswind plane.

This paper presents a rigid body model of a single-line bridled Kiteplane to investigate the
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Fig. 1: The Kiteplane.

influence of geometry on flight dynamics and stability. The bridle is used as a structural element to

alleviate the wing bending moment, but it also constrains the rotational freedom of the kite. The

roll and yaw motion of the kite are coupled, because the bridle acts as a revolute joint between the

tether and the Kiteplane. At a high elevation angle, the roll motion is constrained, and at a low

elevation angle, the yaw motion. At intermediate angles, the motion is a combination of roll and

yaw. The continuous aerodynamic load distribution is represented by discrete forces and moments

acting on the aerodynamically active structural elements of the Kiteplane to make the model largely

parametric in geometry. The kite system model is described in the methodology section and applies

to kites that are build out of straight aerodynamic elements, and which global geometry and inertia

can be assumed constant.

The developed model is subsequently employed to analyze the stability of the Kiteplane in a

case study. Both analytical and numerical results are obtained and compared qualitatively to each

other and a flight test. Stable and unstable domains are identified and tested on robustness by

varying geometry and operational conditions in the simulations.

II. Methodology

This paper focuses on the influence of geometrical design parameters on the global dynamics of a

single-line kite system. Several modeling methods are found in Williams et al. [20]. Optimal control

problems for kite systems are often solved using point-mass models [21–23]. Kite performance is

investigated using lumped mass and massless models [24]. For stability, however, attitude dynamics

are essential and a point-mass model cannot be used. Also, a flexible body model would not provide

6



pure geometry-stability relations. Given this scope and the philosophy that the best model is the

smallest model that describes the behavior of interest, a rigid body approach is selected to model

the kite.

Moreover, to investigate the impact of geometry changes on stability, a parametric approach is

required for the aerodynamic forces. To this end, an aerodynamic element discretization is developed

similar to Meijaard et al. [25].

The equations of motion are derived using Lagrange’s equation of the second kind [26], a method

used frequently for the constrained kite systems [27–29].

A. Kite system definition

The kite system consists of a ground station, a tether and a kite. The ground station is

represented by a point object that acts as a forced sink and source of tether length, where the

tether is modeled as a one-dimensional massless rigid rod element that is free to rotate about its

longitudinal axis. As stated before, the kite is modeled as a rigid body.

The 5 Degrees of Freedom (DOF) of the kite system result from the spherical joint between the

ground station and the tether providing 3 rotational DOF, the variable length of the tether and

the revolute joint between the tether and the kite. The bridle connection between the tether and

the kite constrains the freedom of the kite with respect to the tether and couples the roll and yaw

motion as explained in the introduction. The 5 DOF are defined and illustrated in Figs. 2, 3 and 4.

The kite system definitions use the inertial Earth reference frame, a tether reference frame, a body

reference frame and an aerodynamic reference frame.

Figure 2 displays the ground station and defines the azimuth angle ψ and the zenith angle φ.

The −XE-axis coincides with the wind vector vW . The azimuth and zenith angle are the result of

subsequent rotation about ZE and Y E
′

, such that −ZT coincides with the direction of the tether.

The rotation about the tether’s longitudinal axis, addressed as bridle rotation angle χ, is dis-

played in Fig. 3. The tether length is indicated by lT . The pitch rotation θ of the revolute joint

between the tether and the kite is shown in Fig. 4. To clarify, the bridle rotation angle is such that

Y T is aligned with Y B.
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vW

lT

ψ

φ

XE

Y E

ZE

ZT

XE′

XE′′

Y E′

Fig. 2: Definition of the azimuth angle ψ and the zenith angle φ.

lT

χ

XE′′

Y E′

XT Y T

ZT

Fig. 3: Definition of the bridle rotation χ.

XT

ZT

XB

Y B

ZB

−θ

Fig. 4: Definition of the pitch rotation θ.

With the definition that the origin of the body reference frame coincides with the center of
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gravity (cg), the location of the cg in the Earth reference frame can be expressed as:

rEcg = TET

[

0 0 −lT

]T

+ TEB

[

−xT 0 −zT

]T

. (1)

The coordinates xT and zT represent the location of the bridle hinge line with respect to the

cg, thus to go from the bridle hinge line to the cg they must be subtracted. Expressions for the

rotation matrices TET and TEB are constructed from the angle definitions in Figs. 2, 3 and 4.

The aerodynamic reference frame in Fig. 5 is established from the definition that Xa coincides

with the apparent velocity vector of the kite through subsequent rotations α about Y B and β about

Za. The magnitude of the apparent velocity vector vapp, the angle of attack α, the sideslip angle

β, and the body angular velocity ωcg together determine the aerodynamic forces and moments on

the kite.

vapp

β

α
Xa

Y a

Za

XB

XB′

Y B

ZB

Fig. 5: Definition of the aerodynamic reference frame.

B. Equations of motion

Lagrange’s equation of the second kind, Eq. (2), is used to derive five second order differential

equations that describe the motion of the kite system.

d

dt

∂T

∂q̇i
−
∂T

∂qi
+
∂V

∂qi
= Qi, i = 1, . . . , 5 (2)

The five DOF are represented by the generalized coordinates qi. To evaluate Eq. (2), expressions

need to be found for the kinetic energy T , the potential energy V , and the generalized forces Qi.
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The kinetic energy is obtained from Eq. (3) by substituting Eq. (4) for vcg and Eq. (6) for ωcg.

T =
1

2
mkvcg · vcg +

1

2
ω

T
cg · I · ωcg (3)

Equation (4) is found by differentiating rcg with respect to time and Eqs. (5) and (6) are

constructed from the definitions in Section IIA.

vTcg =

[

0 0 ˙−lT

]T

+ ω
T
ET

×

[

0 0 −lT

]T

+TTB · ω
B
EB

×

[

−xT 0 −zT

]T

(4)

ω
T
ET

=

















0

0

χ̇

















+ TTE′′

















0

φ̇

0

















+ TTE′

















0

0

ψ̇

















(5)

ω
B
EB

=

















0

θ̇

0

















+ TBT

















0

0

χ̇

















+ TBE′′

















0

φ̇

0

















+ TBE′

















0

0

ψ̇

















(6)

The potential energy is given by Eq. (7), where mg represents the kite mass excluding the

confined air. To avoid inclusion of buoyancy forces, the confined air mass is subtracted from mk

assuming that the centers of mass coincide.

V = mgg · rcg (7)

Since the kite system is subjected to nonconservative forces such as aerodynamic and ground

station loads, expressions for these forces are required in the form of generalized forces. For a rigid

body, the resulting aerodynamic loads can be expressed as a force vector and a moment vector that

act on the kite cg. In the body reference frame, these two vectors are denoted by respectively FBa

and MB
a . The force of the ground station acting on the tether is represented by FTGS in the tether

reference frame.
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With the nonconservative forces specified, the generalized force Qi for generalized coordinate

qi can be derived using the principle of virtual work in Eq. (8).

Qi =
∂ṙ

∂q̇i
·F+

∂ω̇

∂q̇i
·M, i = 1, . . . , 5 (8)

The results of applying Eqs. (8) to the generalized coordinates in the kite system are displayed

in Eqs. (9) through (13). Note that the nonconservative forces are transformed to the reference

frames corresponding to the generalized coordinates.

Qθ =
∂

∂θ̇

















MB
a ·

















0

θ̇

0

















+ FBa ·

































0

θ̇

0

















×

















−xT

0

−zT

















































(9)

Qχ =
∂

∂χ̇

















MT
a ·

















0

0

χ̇

















+ FTa ·

































0

0

χ̇

















×

















−xT

0
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















































(10)

QlT =
∂

∂l̇T

















(

FTa + FTGS
)

·

















0

0

−l̇T

































(11)

Qφ =
∂

∂φ̇

















ME′′

a ·

















0

φ̇

0

















+ FE
′′

a ·

































0

φ̇

0

















× rE
′′

cg

































(12)

Qψ =
∂

∂ψ̇

















ME′

a ·

















0

0

ψ̇

















+ FE
′

a ·

































0

0

ψ̇

















× rE
′

cg

































(13)

C. Aerodynamic model

In the generalized forces, the aerodynamics are incorporated through the force vector Fa and

moment vector Ma. However, an expression for these vectors is yet to be found. For this purpose,
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an aerodynamic element discretization is employed to acquire a parametric model in terms of the

geometric properties. The basic idea, illustrated by Fig. 6, is to calculate the aerodynamic forces

locally at the aerodynamic elements and then calculate the contribution to FBa and MB
a based on

the position and orientation of the element in the body reference frame.

LHT

LV T

DHT , DV T
Drw

Dlw

yw

Llw

Lrw

Fig. 6: Illustration of the aerodynamic element discretization.

An advantage of this approach is that it avoids estimations of stability derivatives because they

are in fact accounted for by the relative location and orientation of the aerodynamic elements. In

fact, they result from lower level estimations at the aerodynamic elements. This approach then

yields the aerodynamics tree in Fig. 7, which implementation is discussed in the following.

Aerodynamic forces and moments

Wing Tail

Left wing Right wing HT VT

Fa,lw

Ma,lw

Fa,rw

Ma,rw

Fa,HT

Ma,HT

Fa,V T

Ma,V T

Fig. 7: Aerodynamics forces and moments breakdown.

Wing aerodynamics. To incorporate the dihedral angle as a parameter in the model, the

wing is split up in two aerodynamic elements, left and right. For the calculation of the lift and drag

force on the wing halves, the airflow is observed at the quarter cord point of the spanwise mean

aerodynamic cord (MAC) location (yw). It is assumed that this point best represents the wing half.

By splitting the wing, the effect of dihedral and rotational velocities on the aerodynamic forces and

moments is automatically taken into account. The apparent velocity at the MAC location on the
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right wing is given by Eq. (14), a similar result can be obtained for the left wing.

vBa,rw = vBa,cg + ω
B
cg ×

















xLE −
1

4
cw

yw cos(Γ)

−yw sin(Γ)

















(14)

The global aerodynamic angles α and β are defined, as usual, according to Eqs. (15) and (16)

respectively.

α = arctan

(

vBa,Z
vBa,X

)

(15)

β = arctan





vBa,Y
√

vBa,X
2
+ vBa,Z

2



 (16)

However, to find the local aerodynamic angles, a transformation is required to account for the

rotation of the aerodynamic element about XB. Equation (17) provides the transformation matrix

for a positive rotation ζ about XB. For example, when a straight right wing half is rotated 90◦, the

positive β becomes a negative local angle of attack and the positive α becomes a positive sideslip

angle.









αl

βl









=









cos(ζ) −sin(ζ)

sin(ζ) cos(ζ)









·









α

β









(17)

In the case of the right wing half ζ is equal to −Γ, and for the left half ζ is equal to Γ. For

the calculation of the lift and drag on the wing halves, experimental or theoretical CL − α and

CD −α curves can be used to link the local aerodynamic angles to aerodynamic coefficients. In the

Kiteplane case study, experimental data from [30] is combined with the approach for 3D plates at

an angle from [31] to obtain the curves in Fig. 8.

The lift and drag of the right wing half are then calculated using Eqs. (18) and (19). The

expressions for the left wing half are similar.
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Fig. 8: CL − α and CD − α curves for the Kiteplane wing.

Lrw =
1

2
ρvBa,rw · vBa,rwCL

Sw
2

(18)

Drw =
1

2
ρvBa,rw · vBa,rwCD

Sw
2

(19)

The resulting lift and drag force are used in Eqs. (20) and (21) to calculate the contribution

of the right wing halve to FBa and MB
a . Note that the local aerodynamic angles are used for the

transformation TBa. Similar expressions are obtained for the left wing half.

FBa,rw = TBa

















−Drw

0

−Lrw

















(20)

MB
a,rw =

















xLE − 1

4
cw

yw cos(Γ)

−yw sin(Γ)

















× TBa

















−Drw

0

−Lrw

















(21)

If the wing has a nonzero pitching moment, this can be included separately using Eq. (22),

provided that a value or curve for Cmac
is available.

Mwac
=

1

2
ρvBa · vBa SwcwCmac

(22)
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Horizontal tail plane aerodynamics. The contribution of the horizontal tail plane to the

aerodynamic forces and moments is calculated essentially in the same way as the contribution of

the wing. There are, however, some differences, because the local angle of attack is different from

the global angle of attack due to the incidence angle of the horizontal tail plane and the downwash

from the wing. The derivative of the downwash angle with respect to the angle of attack dε
dα

can, for

example, be estimated using the empirical methods in [32]. The angle of attack at the horizontal

tail plane is then calculated using Eq. (23).

αHT = αl −
dε

dα
α+ iHT (23)

The αl in Eq. (23) needs to be calculated based on the local apparent velocity, which is

calculated using Eq. (24).

vBa,HT = vBa,cg + ω
B
cg ×

















xLE −
1

4
cw − lHT

0

0

















(24)

With the obtained value for αHT , the lift and drag coefficients can be found using estimated

CL−α and CD −α curves. The lift and drag force on the horizontal tail plane are calculated using

Eqs. (25) and (26), where the term (vt/v)
2 accounts for the velocity loss due to the presence of the

wing.

LHT =
1

2
ρvBa,HT · vBa,HT

(vt
v

)2

CLSHT (25)

DHT =
1

2
ρvBa,HT · vBa,HT

(vt
v

)2

CDSHT (26)

Using these lift and drag values, the contribution of the horizontal tail plane to FBa and MB
a

is obtained from Eqs. (27) and (28). Again, the local α and β angles are to be used for the TBa

transformation.
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FBa,HT = TBa

















−DHT

0

−LHT

















(27)

MB
a,HT =

















xLE − 1

4
cw − lHT

0

0

















× TBa

















−DHT

0

−LHT

















(28)

Vertical tail plane aerodynamics. As with the other elements, a single resultant force is

calculated at the quarter cord point of the spanwise MAC location. In the Kiteplane case study

there are in fact two vertical fins, which are approximated by a single element using the fins original

MAC location and aerodynamics properties, but taking into account twice the size. Due to the

simplifications in the model, this is equal to including both fins separately when the small effect of

the lateral position of the fins on the distance to the equivalent vertical tail plane is neglected. The

local velocity at the vertical tail plane is given by Eq. (29).

vBa,V T = vBa,cg + ω
B
cg ×

















xLE −
1

4
cV T − lV T

0

zLE − zV T

















(29)

Since the vertical tail plane element is rotated -90◦ about the XB-axis, the angle of attack for

the vertical tail plane is equal to the sideslip angle resulting from Eq. (16).

With αV T determined, the lift and drag coefficients can again be obtained from estimated CL−α

and CD − α curves. The lift and drag force on the vertical tail plane are calculated with equations

similar to Eqs. (25) and (26), and inserted in Eqs. (30) and (31) to find the contribution to FBa

and MB
a .
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FBa,V T = TBa

















−DV T

−LV T

0

















(30)

MB
a,V T =

















xLE − 1

4
cw − lV T

0

zLE − zV T

















× TBa

















−DHT

−LHT

0

















(31)

D. Ground station force

Since the tether is modeled as a massless rigid one-dimensional rod, the ground station accounts

for the spring damper dynamics. This approach combines the tether dynamics and ground station

dynamics in a single force. The ground station force that represents the spring damper dynamics of

a fixed length tether is given by Eq. (32), where k represents the spring constant and d the damping

constant. Both properties depend on the tether material, thickness and length.

FGS =



















k (lT − lT0) + dl̇T , lT ≥ lT0

0, lT < lT0

(32)

III. Results of the Kiteplane case study

With the described methodology, analytical as well as numerical results can be obtained for

various aircraft shaped kites. In this paper a case study is preformed on a specific kite, the Kiteplane,

to investigate whether the developed model can describe its dominating behavior. The Kiteplane,

displayed in previous figures, features an approximate elliptic wing with positive dihedral from the

tail boom section to the tips and is in size comparable to a small surfkite. The twin tail booms

support the horizontal tail plane that is located in between and the two vertical tail planes on

top. The main geometrical properties are listed in Table 1, where the MAC and its location are

calculated using the definitions from [33].

The inertia of the Kiteplane consists of three parts: the pressurized beam structure, the canopy

surfaces, and the air confined in the tubes and airfoils. The contribution of displaced air is assumed
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Table 1: Geometric properties of the Kiteplane.

Component Parameter Symbol Value Unit

Wing Surface area Sw 5.67 m2

Aspect ratio Aw 5.65

Taper ratio λ 0.66

Dihedral angle1 Γ 14 Deg

MAC cw 1.08 m

MAC location yw 1.21 m

Airframe Total length l 3.08 m

HT distance lHT 2.24 m

VT distance lV T 2.56 m

HT Surface area SHT 1.28 m2

Aspect ratio AHT 2.2

MAC cHT 0.76 m

VT 2 × surface area SV T 0.33 m2

Aspect ratio AV T 1.2

Taper ratio λV T 0.59

LE sweep ΛLE,V T 23 Deg

MAC cV T 0.38 m

MAC location yV T 0.20 m

1 Of the outer wing.

to be negligible, because the Kiteplane is still about five times heavier than air. Estimations based

on the CAD model give the following properties:
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mk = 4.21 kg, mg = 3.44 kg,

rBLE =

[

0.916 0 0.089

]T

m,

I =

















7.38 0 0.18

0 4.20 0

0.18 0 11.43

















kgm2.

The vector rBLE represents the position of the LE with respect to the cg in the body reference

frame. Apparently, the center of gravity is located at about 92 cm behind the leading edge of the

wing, this is at approximately 85% of the MAC.

A. Analytical stability analysis

By examining the free body diagram of the kite, the static stability of distinct motions of the

system can be determined. However, when the kite is located in the plane spanned by the wind

velocity vW and the vertical, the symmetry plane, the results are equivalent to that of a regular

airplane. The only difference, the tether force, acts in this case as additional gravity and thrust.

This situation can be viewed as gliding flight.

Application of airplane stability analysis as described by e.g. [34–36] to the Kiteplane, yields

longitudinal static stability in the symmetry plane if vW > 3 m/s depending on the angle of attack.

Although the aerodynamic center (ac) of the Kiteplane is located at approximately lHT
SHT

S
= 0.51

m behind the wing ac, or 15 cm in front of the cg, the tether force moves the apparent cg in front

of the aerodynamic center if the lift excesses exceeds the weight. The results of the longitudinal

stability analysis are summarized in Fig. 9, which shows the pitch and zenith angle equilibrium in

φ-α space. The arrows give an indication of the convergence.

The angle of attack that satisfies pitch equilibrium does not depend on φ and is therefore a

straight line. The equilibrium in zenith angle is more interesting because it is equivalent to the

L/D, including weight effects, for a specific angle of attack and wind velocity. The maximum L/D,

or minimal equilibrium φ, is achieved at α ≈ 8◦. However, these equilibrium lines will shift if

the operating conditions change. For example, a higher wind velocity reduces the relative effect of
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gravity and this will cause the solid line to shift to the left for a higher L/D and the dashed line

downwards for a lower lift coefficient.

φ, deg
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Fig. 9: Static longitudinal stability with zenith equilibrium — and pitch equilibrium −−.

Lateral stability analysis in the symmetry plane, without lateral components of the tether force

and gravity, shows that the Kiteplane is statically stable in pure roll (low elevation) and pure

yaw (high elevation). Because positive rotation about XB initiates positive rotation about ZB

and vice versa, rotation about ZT is a statically stable combination of the investigated extremes.

Furthermore, sideslipping is dynamically stable.

If the kite moves outside the symmetry plane, the situation is fundamentally different from

airplane motion due to the constraints posed by the fixed length tether and the bridle connection.

In this condition, the tether force and gravity start to interfere in the roll and yaw motion of the

kite. To investigate the stability of this motion the reduced model displayed in Fig. 10, with the

two DOF θT and χ, is analyzed.

Pendulum stability requires the Kiteplane to converge to the situation displayed in Fig. 10 from

a disturbance in θT . To investigate the pendulum stability, the situation in Fig. 11 is considered.

This is a typical scenario where, for the observer, the Kiteplane is located on the left side and falling

to the left side. It is assumed that χ changes such that the Kiteplane always points approximately

into the wind (−XE), because then the lateral force FBY is tangential to the pendulum arc and

relates directly to θT . This assumption restrains the DOF χ, but aerodynamically the rotation
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χ̇

θT

XE

Y E

Fig. 10: Kiteplane system pendulum motion.

about ZT is governed by β, which is free and replaces χ as the second DOF. The sum of the lateral

forces is given by Eq. (33). The sum of moments about XB and ZB, evaluated at the tether

attachment point located below the wing ac, are given by Eqs. (34) and (35) respectively. The

minor impact of the horizontal tail lift and drag force on the pendulum motion is neglected.

∑

FBY = −2 (Lf cos(β) +Df sin(β))− Yrw + Ylw +

FZ sin(θT ) (33)

∑

MB
X = (Llw − Lrw) yw + (FBr

− FBl
) yb cos(δ)−

2 (Lf cos(β) +Df sin(β)) (yV T + zT ) +

FZ sin(θT )zT (34)

∑

MB
Z = (Xrw −Xlw) yw cos(Γ)− FZ sin(θT )xT +

2 (Lf cos(β) +Df sin(β)) lV T (35)

In Eqs. (33) through (35), the lift and drag of the wing halves has been converted to X and

Y components. The wing dihedral causes a difference in angle of attack between the wing halves,

therefore the lift and drag cannot be conveniently captured in the body reference frame. Figure 12

provides an indication of the variation in force coefficients CXw
and CYw

with β in case α = 5◦.

The lift and drag forces in Eqs. (33) through (35) are obtained using the common aerodynamic
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Fig. 11: Front and top view of the Kiteplane in pendulum motion.

relations in Section II C. The forces like Xrw are calculated similarly, but now the drag coefficient

is for example replaced by CXrw
. Note that these forces are simply transformations of lift and drag.

The gravitational force FZ is found by multiplying mg with the gravitational acceleration.

To find quantitative results for the pendulum stability, the following case constants are intro-
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Fig. 12: CXw
and CYw

for the right wing — and left wing −− as a function of β with α = 5◦.

duced:

ρ = 1.225 kgm−3, g = 9.81 ms−2,

xT = 0.65 m, vt
v

= 0.95,

zT = 0.2 m, vW = 6 m/s,

α = 5 deg, θ = −5 deg.

Because the pendulum motion is a combination of θT and β, strictly necessary conditions for

static stability are difficult to define, however, four sufficient conditions can be formulated using Eq.

(36).

dFBY /dθT < 0

dFBY /dβ < 0

dMT
Z /dθT < 0

dMT
Z /dβ > 0

MT
Z =MB

Z cos(θ) +MB
Xsin(−θ) (36)

With the case constants substituted, FBY and MT
Z can be plotted as functions of θT and β.

Figure 13 displays the lines FBY = 0 and MT
Z = 0 in θT -β space. The lines represent the equilibrium

condition for Y B and ZT . The only equilibrium for the pendulum motion is found at the point

(0,0) in Fig. 13, which is the trivial equilibrium in the symmetric plane. The arrows in Fig. 13

indicate in which direction the Kiteplane is accelerated. They are, in steady state, a measure for

the acceleration vector in θT -β space with x-component θ̈T and y-component β̈.
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Fig. 13: Pendulum stability with θT equilibrium — and β equilibrium −−.

Figure 14 displays horizontal and vertical slices of Fig. 13. Figure 14a displays a horizontal

slice at β = 10◦ and Fig. 14b a vertical slice at θT = 20◦ (right), which gives an impression of the

gradients. Observation of the gradients yields the conclusion that three out of four of the sufficient

conditions for static pendulum stability are met. The derivative dFBY /dθT is positive instead of

negative.

Nonetheless, if a positive equilibrium β results in a negative value for FBY , the system may still

be stable. This means that in Fig. 13 the dashed MT
Z line should be steeper than the solid FBY line,

but this is neither the case. Similar conclusions can be drawn from following the arrows in Fig. 13,

which results in diverging either to the left or to the right.

θT , deg

-60 -40 -20 0 20 40 60

(a) Slice at β = 10◦

β, deg

-30 -20 -10 0 10 20 30

(b) Slice at θT = 20◦

Fig. 14: FBY — and MT
Z −− for two slices in θT -β space.

The analysis in this section proves that the Kiteplane system restricted to pendulum motion is
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unstable. This cannot be guaranteed for the unrestricted Kiteplane system, but it is nevertheless

likely that it exhibits some of this unstable behavior. The investigation of this pendulum motion is

continued trough numerical simulation.

B. Numerical simulation results

To study the motion of the Kiteplane, numerical simulations are produced with a MAT-

LAB/Simulink model that is constructed from the derived equations of motion. The model is

used to solve initial value problems, which results can subsequently be compared to other simula-

tions or flight tests. The structure of the model is displayed in Fig. 15, each block represents a

procedure or a subset of procedures. The procedure that calculates the second order time deriva-

tives of the generalized coordinates is for example represented by the q̈ block. The actual model

that calculates the motion of the Kiteplane system consists of the blocks that are enclosed by the

dashed line. The blocks Constants and x0 are inputs for the model and the blocks Dashboard and

x tracking are the outputs.

Constants

Aerox tracking

Dashboard

rE vE va, α, β, ωB

Qq̈

1

s

x0

Fig. 15: Global structure of the numerical model.

With the input, first the position of the cg is calculated in the Earth reference frame by the block

rE . The second operation is to calculated the velocity in the Earth reference frame, this is done by

the block vE . By combining vE and the wind velocity from the input data, the aerodynamic states

vapp, α, β and ωB are determined by the eponymous block. This block concludes the preparing

calculations to solve the equations of motion.

In the Aero block, the aerodynamic force vector FBa and the aerodynamic moment vector MB
a

are calculated based on the aerodynamic states. The Q block calculates the ground station force,

adds it to the aerodynamics forces, and converts the sum to a generalized force for each of the five
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generalized coordinates. The second derivatives of the generalized coordinates are calculated by the

q̈ block. The 1

s
block concludes the time step by integrating the state vector derivative to find the

new state. After this, the whole procedure is repeated until the time reaches the predefined end

time of the simulation.

Flight test comparison. To test the validity of the model, a typical test flight is reconstructed.

The state of the Kiteplane after the launch is estimated from flight test footage and fed into the

model as initial conditions. The simulated motion and estimated initial conditions are displayed in

Fig. 16. The corresponding flight test footage is shown in Fig. 17 for comparison. The 3D flight

path displayed in Fig. 16 is similar to that in Fig 17, but the motion takes 40% more time in the

simulation. This is a significant difference, but both seem to show the same instability.
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Fig. 16: 3D path of diverging motion with asymmetric and static initial conditions: θ = −10◦,

χ = −60◦, lT = 25 m, φ = 25◦, ψ = 45◦, and ∆t = 17 s.

Due to the initial sideslip angle, the Kiteplane starts moving in the −Y E direction and rotating

about the ZT axis. At 4 s, the Kiteplane reaches its maximum ψ angle and slowly starts moving

in Y E direction. Due to the high inertia in Y E motion compared to the inertia in ZT rotation,

the Kiteplane is already highly rotated before the motion in Y E direction gains momentum. This

behavior causes the Kiteplane to reach a sideslip angle of almost -40◦ at t = 6 s. From this point

26



Fig. 17: Composite photo constructed from flight test footage with vW ≈ 6 ms−1, the flight time

captured in this figure is approximately 12 s.

on, the Kiteplane starts accelerating in Y E direction with increasing α, increasing vapp and quickly

reducing β. At the passing of −XE, the same inertia that initially kept the Kiteplane from returning

to ψ = 0 is now causing a major overshoot in ψ. At about 11 s, the Kiteplane is pushed toward a

point of no return and falls to the ground. The increase in β at this point is insufficient to generate

a large enough aerodynamic force in −Y B direction to overcome the gravity component in Y B

direction.

The pendulum motion that was studied analytically in the previous section seems dominant

in this flight and it appears that the analytical approach as well as the simulation agree on the

instability that is observed in reality. A comparison of the simulation and the analytical pendulum

analysis is displayed in Fig. 18. The simulated trajectory in θT -β space is indicated by the gray

line, with the circle mark as starting point and the cross mark as final state.

As explained previously, a position above and to the right of the solid and dashed black lines

yields respectively a negative force in Y B and a positive moment about ZT . Similarly, a position

below and to the left of the solid and dashed black lines yields respectively a positive force in Y B

and a negative moment about ZT . The magnitude of the force and moment increases with distance

from the equilibrium lines. The arrows show approximately the local acceleration vector in θT -β

space and are therefore the most intuitive means to determine the expected direction of motion.

Thus, in the starting condition, FBY is negative and MT
Z is positive. This is in correspondence

with the motion displayed in Fig. 16. Subsequently, this motion causes the Kiteplane to move to
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Fig. 18: Pendulum static stability applied to diverging motion — with asymmetric and static

initial conditions: θ = −10◦, χ = −60◦, lT = 25 m, φ = 25◦, ψ = 45◦, and ∆t = 17 s.

another position in θT -β space where FBY is positive and MT
Z is negative. This in turn causes the

Kiteplane to move in the direction of Y E with increasing velocity. This increase in velocity reduces

the inertia effects compared to the aerodynamic effects and the gray line start to converge toward

the dashed black line in the upper right quadrant. However, the equilibrium sideslip angle does

never result in a sufficient large sideslip angle for θT to convergence. While the sideslip angle is

slowly converging, the Kiteplane is falling to the side.

From the acceleration arrows alone, one would expect the Kiteplane to fall to the right side by

converging to the dashed black line on the right. At first the gray line seems to do exactly that,

but at a certain point the line shoots downwards in the area that pushes the Kiteplane back to the

middle. Apparently, not all important effect are described by the static 2 DOF approximation. This

could be expected because the assumptions that the apparent wind velocity is equal to the wind

velocity, the heading coincides roughly with XE, the body rotational velocities are small, and the

roll-yaw coupling is constant, do not hold throughout this flight trajectory.

Moreover, it appears that in reality the asymmetric motion is more stable than Fig. 18 suggests.

Due to the inertia in rotation about the tether, the sideslip convergence can be either periodic or

aperiodic. If the sideslip motion is periodically converging, the overshoot that causes the heading

of the Kiteplane to point toward the middle triggers the symmetric motion. This leads to mixing of
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the unstable asymmetric motion with the stable symmetric motion, which increases the apparent

lateral stability.

If the dashed line in Fig. 18 is relatively steep, i.e. sideslip equilibrium is achieved at high

sideslip angles, the Kiteplane tends to rotate more, and this induces the mixing of symmetric and

asymmetric motion. A relatively flat solid line, which it is not in this case, allows more time for

rotation and hence increases apparent lateral stability. In fact, the Kiteplane system can be stable

even when the solid line is slightly steeper than the dashed line.

To summarize, the validity of the static 2 DOF analysis is limited, but it does provide useful

insights in the cause of the instability. It seems essential to have a small enough vertical tail plane

to achieve a large enough equilibrium sideslip angle, and a large enough lateral area to generate a

strong enough lateral force. To test this hypothesis, simulations are run with various vertical tail

plane sizes and dihedral angles.

Impact of design variations on stability. Inspection of Table 1 yields many geometrical

parameters to investigate, but only the ones with the largest impact on the stability are really

interesting for the scope of this paper. The main parameters for longitudinal stability are SHT

Sw

and lHT

c
. Since this case study is on the Kiteplane, the wing dimensions are kept constant for

convenience and varying SHT and lHT is therefore equivalent to varying the ratios.

Figure 19 shows the effect of reducing the tail boom length on longitudinal stability. The

trajectory indicated by the gray lines is the launch motion, where the dashed line represents that

for the original size. The effect of reducing SHT by 20% yields similar results. Apparently, the

horizontal tail plane contribution can be reduced without jeopardizing stability, the 20% reduction

even decreases the overshoot in φ significantly.

For the lateral stability, the interesting parameters are SV T , lV T and Γ. Next to these param-

eters, the inclusion of an additional lateral surface on top or below the wing is regarded interesting

as well. The main effect of such a surface can be achieved with dihedral as well, but secondary

effects are inherently different. The most noticeable difference is the effect of dihedral on the yaw

moment, which is absent for a single vertical surface in the middle of the Kiteplane.
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Fig. 19: Effect of 20% reduction in tail boom length on longitudinal stability during launch,

original length −− and reduced length —.

Nevertheless, the parameters SV T and Γ are selected for the lateral stability investigation.

Keeping the tail boom length constant avoids side effects on longitudinal stability and adjusting Γ

is simply found more elegant than the addition of a vertical surface. The impact of variations in

SV T and Γ on the inertia is neglected to keep the results depending on geometry only. The effects

due to changing inertia are investigated at a later stage.

The stability is assessed based on simulation results in the range −10◦ < Γ < 40◦ and 0 <

SV T

SV T0

< 8 for two different wind velocities. The arrangements of the stability domains are displayed

in Fig. 20. Basically, small vertical tail planes cause diverging oscillations and low dihedral angles

cause aperiodic divergence. Stability requires a large dihedral angle and a vertical tail plane of

about 1 to 3 times the original size. Furthermore, the stable domain increases with increasing wind

velocity.

For low dihedral angles and low wind velocities, increasing the vertical tail size leads from

unstable oscillations to aperiodic divergence. If the dihedral angle and wind velocity are large

enough, a stable regime emerges in between. The stable regime itself consists of three domains. The

first, for a small vertical tail plane, is the stable oscillation. The second, for a medium sized vertical

tail plane, is the converging oscillation. For large vertical tail planes and low dihedral angles,

a domain of aperiodic convergence exists. For higher wind velocities the aperiodic convergence

domain increases in size at the cost of the converging oscillation domain.
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Fig. 20: Stability chart depending on SV T

SV T0

and Γ for two wind speeds.

At the boundary of diverging oscillation and stable oscillation something peculiar occurs, which

is visible in Figs. 20a and 20b. At a vertical tail plane size slightly too small for stable oscillation,

there seems to be a small band of Γ values that still yield a semi-stable oscillation. When the

vertical tail plane area is reduced sightly from stable oscillation, the stable figure-eight pattern

starts to oscillate itself. This behavior can be compared with the precession of the rotation axis of

a spinning top. For most cases, the crossing of the figure-eight starts to move in Y E direction, one

circle becomes larger than the other and eventually the Kiteplane crashes into the ground.

Another feature that is invisible in Figs. 20c and 20d are the roots of the different stable

domains. These figures reveal that there is always a converging oscillation domain below the stable

oscillation domain, and that the arrangement of the aperiodic convergence domain is depending a
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lot on wind velocity.

The pendulum stability according to the five stability domains with a sample flight trajectory

are displayed in Fig. 21. The equilibrium lines in Fig. 21 are calibrated to the average conditions

during the trajectory.
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Fig. 21: Pendulum stability with θT equilibrium — and β equilibrium −− according to the five

different stability domains, including sample trajectories starting at the circle mark.

The first thing to notice is that the differences between the equilibrium lines is small compared to

32



the resulting trajectory. While the behavior and geometry in both unstable domains is significantly

different, the equilibrium lines have a similar slope difference. It appears that, in general, if the

difference between the slope of the solid and dashed line becomes too large, the system becomes

unstable.

The stable oscillation domain displayed in Fig. 21b is the desired stability space according

to the pendulum stability analysis in Section IIIA. The dashed line is steeper than the solid

line, which means that the Kiteplane converges to a sideslip angle that generates a resultant force

toward θT = 0. However, this configuration lacks damping configuration’s lack of damping results

in continued oscillations.

At the border of stable oscillation and converging oscillation, the dashed line is on top of the

solid line. From the 2 DOF pendulum motion point of view, this is the border to unstable behavior.

However, the longitudinal stability improves lateral stability and is in fact crucial in the entire

converging domain.

If the solid line is only slightly steeper than the dashed line, the motion is still oscillatory. If the

difference in slope becomes larger, the oscillations disappear. This is the domain of aperiodic con-

vergence and illustrates the improved apparent lateral stability very clearly, because the acceleration

arrows indicate divergence.

Nevertheless, if the lateral instability becomes too large for the longitudinal stabilization, the

motion diverges as displayed in Fig. 21e. The absolute slope difference in Figs. 21d and 21e are

about equal, but the relative difference is larger because the slopes in Fig. 21e are shallower.

As an additional illustration of the motion of the Kiteplane system, a sample trajectory of stable

oscillation is displayed in Fig. 22. The trajectory starts with a launch from a slight asymmetric

initial condition: χ = −10◦ and ψ = 10◦.

Impact of operating conditions on stability. During kite flight, various operational con-

ditions occur. Also, the presented model is a simplification of reality based on assumptions that

have an impact on accuracy. For these reasons, it is important that stability holds for both varying

conditions and small design variations. To determine the impact of these variations on stability
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Fig. 22: Stable oscillation trajectory for Γ = 20◦, SV T

SV T0

= 0.63 and vW = 10 ms−1.

several simulations are run, where each simulation varies a single parameter. The results of these

simulations are compared to the converging oscillation reference case with the following parameter

values:

vW = 8 m/s, Γ = 20 deg,

lT = 25 m, SV T

SV T0

= 1.5,

xT = 0.3 m.

All other parameters are equal to the original design values. The simulation results are sum-

marized in Table 2.

According to the results in Table 2, the stability of the reference case seems robust. To find out

if the robustness holds for combined variations, the following two cases are assessed.

1. Inertia +30%, Γ +30% and SV T

SV T0

−30%

2. Inertia −30%, Γ −30% and SV T

SV T0

+30%

The first case, which leans toward diverging oscillations, as well as the second case, which leans

toward aperiodic divergence, are in fact still converging. Although the latter is on the verge of

aperiodic divergence, these results are promoting the idea of a configuration that is stable in the

entire operating domain.

34



Table 2: Impact of operating conditions on stability.

Parameter variation Asymmetric initial conditions Lateral step gust of 0.5vW

Reference Converging oscillation Converging oscillation

Inertia
−30% More damped oscillation More damped oscillation

+30% Less damped oscillation Less damped oscillation

Γ
−30% Aperiodic convergence Aperiodic convergence

+30% Less damped oscillation Less damped oscillation

SV T

SV T0

−30% Less damped oscillation Less damped oscillation

+30% More damped oscillation More damped oscillation

xT

0.0 m More damped oscillation More damped oscillation1

0.55 m Aperiodic convergence Aperiodic convergence

0.6 m Aperiodic divergence Aperiodic divergence

lT

10 m More damped oscillation More damped oscillation

100 m Equal damping, longer period Equal damping, longer period and

lower amplitude

vW

4 ms−1 Less damped oscillation1 Less damped oscillation1

16 ms−1 More damped oscillation1 More damped oscillation1

1 Requires new trim setting for proper longitudinal equilibrium in α.

IV. Conclusions

The geometric requirements for stable flight dynamics of a Kiteplane are different from these

of regular airplanes. Similarities are found in the longitudinal motion, but the constraints resulting

from the tether and the bridle connection give rise to instabilities in the lateral motion outside the

symmetry plane. The pendulum motion in particular poses additional requirements for stability.

With the developed rigid body model, an explanation is found for the pendulum instability of

the Kiteplane design considered in the case study. The analytical analysis yields the hypothesis

that a large wing dihedral angle combined with a small vertical tail plane area provides pendulum

stability. The small vertical tail plane causes the equilibrium sideslip angle to be large enough for

the effective lateral area to generate an aerodynamic force that opposes and overcomes the lateral

component of gravity.

35



Numerical simulations of the derived equations of motion confirm the hypothesis, but the criteria

on the geometry appear to be less strict. Due to the mixing of longitudinal and lateral motion,

stability is achieved with a larger vertical tail plane area than predicted by the analytical results. In

addition, it is found that reducing the horizontal tail plane area by 25 % improves the convergence

of the longitudinal motion.

The numerical simulations are only partially successful in reconstructing the presented test

flight, but this may be improved when more and accurate data becomes available for calibration of

the model.

The results indicate that the stability of the Kiteplane is highly depending on lateral area

parameters. More precisely, the simulation results show that the 2D Kiteplane design space spanned

by dihedral angle and vertical tail plane area consists of the five different stability domains listed

below.

• Unstable oscillation for a dihedral angle > 5◦ and a vertical tail < 3% wing area.

• Stable oscillation for a dihedral angle ∼ 25◦ and a vertical tail ∼ 4.5% wing area.

• Converging oscillation for a dihedral angle ∼ 25◦ and a vertical tail ∼ 9% wing area.

• Aperiodic convergence for a dihedral angle ∼ 25◦ and a vertical tail ∼ 25% wing area.

• Aperiodic divergence for a dihedral angle < 10◦ and a vertical tail > 25% wing area.

In respect to these stability domains, the investigated Kiteplane design features a too small

lateral area that is distributed too far to the back. A geometry change that moves the design to

the converging oscillation domain is, according to the simulation results, stable for a solid range in

design inaccuracies and operational conditions.
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