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THE THEORY OF INDUCED LIFT AND MINIMUM INDUCED DRAG
OF NONPLANAR LIFTING SYSTEMS

By Crarence D. Cong, Jr.

suMMARY /629

The basic theory of the induced lift and drag of
nonplanar, circulation lifting systems is developed,
and methods are evolved for determining the span
force loading intensity necessary for minimum in-
duced drag. It is shown that the aerodynamic
efficiency of such optimally loaded systems can be
expressed in lerms of an effective aspect ratio which
depends in value upon the spatial distribution of the
vorticity of the system. Methods for determining
the maximum effective aspect ratio of arbitrary
lifting systems of given span by wuse of conformal
transformation and electrical potential-flow analog
techniques are developed and tlustrated. The value
of the induced-drag efficiency factor is determined
for the families of circular, semiellipse, and com-
plete-ellipse arcs and for several more complex forms.
The results of the theory are interpreted in terms of
the physical airfoil requirements necessary for sisc-
cessful realization of the theoretical induced-drag
reductions.

The practical application aspects of nonplanar
wing systems are briefly considered.

INTRODUCTION

The requirements of many modern aircraft
missions are such that high values of aerodynamic
efliciency must be obtained with aircraft having
wings of relatively restricted span lengths. In
many of these missions the aircraft must operate
at relatively large values of the lift coeflicient,
and the large induced drag associated with the
small span consequently results in a rather low
value for the operational aerodynamic efficiency.
In endeavoring to increase the flight efficiency of
such aireraft, it becomes necessary to investigate
more complex and unconventional wing forms

which might offer the possibility of securing ap-
preciable reductions in the induced drag, subject
to the restriction of limited span length. Such
forms are to be found among the various non-
planar lifting systems in which the lifting surfaces
have an appreciable curvature or extension in a
vertical plane perpendicular to the direction of
flight.

This paper has as its primary objective, there-
fore, the development of the quantitative theoreti-
cal procedures by which the minimum induced
drag of arbitrary nonplanar lifting systems can
be determined (subject to the physical restraint
imposed by limiting the allowable projected span
of the system). With these procedures, the opti-
mum spatial distribution of vorticity, correspond-
ing to the minimum induced drag for a given lift,
can be obtained for any system. Both conformal
transformation and electrical analog techniques
are developed for determining the optimum
vorticity intensities of the system, and their use
is illustrated by calculating the induced-drag
efficiency [factor for several complex, nonplanar
wing systems. In order that the theoretical treat-
ment be reasonably self-contained and in order
that the effects of spanwise curvature on the in-
duced flow field may be made clear, the general
theory of induced forces on nonplanar wings is
developed in some detail for the case of a lifting
arc, and the general lift and induced-drag integrals
are derived for the case of wings possessing an
arbitrary circulation distribution.

The theorctical developments in this paper are
based upon the assumption of inviscid, incompres-
sible fluid flow so that the results are directly
applicable to subsonic flight in air. The general
nature of the results, however, makes them
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equally applicable to the design of water-based
lifting systems such as hydrofoil planes and other
submerged lifting systems. Linear vortex theory,
assuming small induced velocities compared with
the free-stream velocity, is used throughout.

This report is intended purely as a generalized
development of the procedures by which the mini-
mum induced drag of nonplanar wing systems can
be determined. It is not the intention here to
make any detailed investigation of the relative
induced-drag efficiencies of particular nonplanar
wings. By way of illustration of the procedures,
however, the induced-drag efficiency factor is de-
termined for a few arbitrarily selected systems.
The general methods derived herein can be applied
as desired to the investigation and evaluation of
specific lifting systems intended for particular
aircraft applications.

As an indication of the various factors affecting
the physical design of actual nonplanar wing
systems, a brief consideration of the practical
application aspects of such wings is also presented.

SYMBOLS
A aspect ratio
A’ curved-span aspect ratio, b'*/S
A effective aspect ratio
a cirele radius in conformal transforma-
tions
vr
B a constant, ( = dy
[Vt G
b wing span of flat wing
b’ projected wing span of nonplanar wing
Ch drag coeflicient
Cp, aircraft parasite-drag coeflicient
Cpo wing profile-drag coefficient
&% wing lift coefficient
Oy, constants
D drag force
D, D, induced-drag force (boldface symbol
denotes vector)
D;, D; induced-drag force loading intensity
(boldface symbol denotes vector)
d camber depth
E modulus of elasticity; also electric
potential
e eccentricity of an ellipse
F' ¥ aerodynamic force loading intensity
(boldface symbol denotes vector)
F, aerodynainic force intensity component

normal to V (see eq. (4))
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T
Toaz
r,

aerodynamic force intensity component
parallel to V (see eq. (3))
gap distance in biplanes

l
a constant, a

area moment of inertia

a constant, BN,

a constant (see eq. (97))

span efficiency factor

lift force (boldface symbol denotes
vector)

lift-force loading intensity (boldface
symbol denotes vector)

induced lift force

lift loading intensity in plane of syvm-
metry

distance in the Joukowski transforma-
tion

bending moment

a constant (see eq. (42))

a normal unit vector

points in space

a constant (eq. (58))

total velocity (boldface symbol denotes
vector)

bound-vortex induced velocity vector

vortex-sheet induced velocity vector

distance in induced-velocity equation
(boldface symbol denotes vector)

wing area

vector of surface area

arc-length coordinates

arc-length coordinates of wing tip

total arc span length

unit tangent vector of arc

free-stream velocity (boldface svinbol
denotes vector)

tangential velocity of vortex flow

complex potential function of a flow

free-stream vertical flow velocity about
wakes (boldface symbol denotes vee-
tor)

Cartesian coordinates

complex variable, y-+iz

camber factor

circulation distribution function

maximum value of circulation

value ol circulation in plane of sym-
metry
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¥ nondimensional Cartesian coordinate,
2y/b’

A denotes an increment

) nondimensional Cartesian coordinate,
2z/b’

€ electric intensity vector

'Y vorticity vector

I complex variable, n+i¢

&o complex coordinate of center of circle
in conformal transformations

£y Cartesian coordinates of ¢-plane

0 angle of inclination of r (fig. 4)

A nondimensional Cartesian coordinate,
279/b’

p mass density of fluid

o nondimensional Cartesian coordinate,
2£/6’

T arc slope angle, tan™ (dz/dy)

@ velocity potential

Qs vorticity intensity vector of vortex
sheet

¥ span ratio factor, b/b’

w angle between tangent and secant
vector of arc (fig. 36)

v the del operator

Superseript:

P denotes point at which velocity is
specified

Subscripts:

e electrical analog quantity

eff effective value

1 induced quantity

mazx maximuimn

P, P’ denotes conditions at a specific point
in space

w wing property

1,2, 3,4 denotes end point of path of integration

e denotes condition at infinity

o denotes value of quantity in plane of

syminetry
FUNDAMENTAL THEORETICAL CONSIDERATIONS
In this section, theoretical relations are derived
for calculating the lift and induced-drag relation-
ship for nonplanar lifting systems which possess a
known distribution of circulation. The general
case of determining the lift and induced drag of
systems with an arbitrary circulation distribution
is considered first. Then the more specific case of
determining the circulation distribution for mini-
muin induced drag i1s investigated by use of Munk’s

induced-drag theorems.

Before entering into the theoretical development,
however, a discussion of the basic problem of
increasing the overall efficiency of actual wing
systems 1s presented so that the physical sig-
nificance of ‘the subsequent theoretical predictions
of induced drag can be properly interpreted.

THE EFFICIENCY LIMITS OF PHYSICAL WING SYSTEMS

The requirements for obtaining high aerody-
namic efficiency with a conventional flat-span
wing can be seen from the expression for the wing
drag polar

2
OD,w=0D0+'7'r%A_

where Cp,, the profile-drag coeflicient, is a function
of (. Obviously, it is desirable for Cp, to be as
small as possible and the effective aspect ratio
kA to be as large as possible. These two require-
ments are incompatible, however. The thickness
ratio of a wing increases as the aspect ratio is
Increased, and since the value of (p, increases with
thickness ratio, a point is ultimately reached where
increases in geometric aspect ratio (or span length)
are actually detrimental since the increase in pro-
file drag becomes larger than the induced-drag
reduction. In addition, for a constant wing area
the structural weight of the wing must increase as
the aspect ratio increases and this requirement
necessitates operation at a higher value of (7, for
a given flight dynamic pressure and payload
weight, with a consequent increase in induced
drag. When all these structural-aerodynamic
interactions are taken into account in the design
of an aircraft intended to fulfill a specific set of
mission requirements, the analvsis results in the
determination of an optimum wing form with
specified span b, wing area S, and aspect ratio .
The overall aircraft range and endurance paramn-
eters then become

L a,
Do O
ODp_I_ CDO+$4
L3/2 CL3/2
D~ 7
ODp+ ODc+7rkA

If the value of Cp, is considered to be inde-
pendent of the lifting system for a given aircraft,
improvements in aerodynamic efficiency can come



4 TECHNICAL REPORT R—139—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

only from use of more efficient wings. With the
assumption then that an optimum flat wing has
been selected for a given aircraft mission, the
question arises as to whether other wing forms
exist which would possess less drag for the same
operating conditions of cruise flight. In order to
have a higher efficiency at cruise than the optimum
flat wing, a lifting system must offer a significant

decrease in at least one of the factors Cp, or
2
W_CklA without simultaneously increasing the other

to such an extent that the beneficial effect is

2
cancelled. The coefficient WOZ implicitly involves

not only the effective aspect ratio £A4 of the sys-
tem, but also the wing structural weight which in
turn helps to determine the value of C; for cruise.
Increased structural weights, of course, mean
larger values of ( for cruise, with an attendant
induced-drag increase.

The following theoretical considerations show
that there exist an infinite number of lifting
systems which possess less induced drag for a
given lift than the optimum flat wing (elliptical
planform) of equal span. In fact, many non-
planar wing forms exist which are more efficient,
from the induced-drag standpoint, than optimum
flat wings with greater spans. However, such
nonplanar wing forms must also be considered in
terms of their structural weights and profile-drag
coefficients in any practical, overall efficiency
comparison with a flat-span wing. Clearly, the
possibility of realizing net efficiency gains with
nonplanar wings depends critically upon the ability
to construct such forms with sufficiently low
structural weights and physical surface areas, as
compared with flat wings. Since the nature of
the necessary design compromises of wing area
and structural weight is determined by the specific
mission requirements for a particular aircraft, no
general statement can be made a priori about the
net efficiency gains which can be anticipated with
nonplanar systems. The value of nonplanar wing
forms for particular applications depends upon
the nature of the specific mission involved and each
application must therefore be considered as a
separate case.

The subsequent theoretical predictions are
indicative only of the induced-drag efliciencies of
nonplanar systems and must, therefore, be in-

terpreted in light of the preceding discussion

when such forms are considered for specific appli-
cations. The induced-drag efficiency factors of
the sequel, however, are developed in a form which
is particularly suitable for such overall design
analysis.

THE INDUCED VELOCITY

Consider first an arbitrary length of a bound-
vortex arc (representing a cambered-span airfoil)
having a prescribed circulation distribution T'(s)
and situated in a plane perpendicular to a steady
free-stream flow of velocity V. Since the vortex
filaments composing the arc cannot terminate in
the flow, there must emanate from the arc a vortex
sheet whose intensity in the immediate vicinity
of the arc is given by dT'/ds taken along the arc
(fig. 1). According to the law of induced velocity,
the entire flow field 1s specified by

1 z r 1 (¢ T

z
where ff denotes area integration over the semi-

8
infinite vortex sheet,f denotes line integration

along the bound arc, and t is the unit tangent
vector along the arc. By the Kutta-Joukowski
theorem, the bound-vortex arc will be subjected
at each point of its length to an aerodynamic force
whose loading intensity F’ is

F(s)=pg(s) XT(s)t (2)

where q(s) is the total velocity at points along the
arc.

Since, in general, the velocity field q is not uni-
form, the wake will react upon itself to produce a
continuous distortion ol the vortex sheet, and this
distortion will be reflected in an alteration of F’(s)
as is evident from equations (1) and (2). The
nature of such interactions is discussed in reference

Y 4

Vortex sheet

Fraure 1.—The vortex and force system of a lifting are.
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1 for the particular case of an elliptically loaded
straight vortex line.

Linearizing assumptions.—If, however, the rate
of variation of the circulation along the bound arc
dr/ds is relatively small and the value of V rela-
tively large, then the value of qs(s), the wake
induced velocity at the are, as given by

4:()=p f f “eax S as ®)

will be small compared with V. The rate of defor-
mation and inclination of the wake will then be
sufficiently small that such deformation effects
can be neglected and the vortex sheet assumed to
extend unaltered to infinity, parallel to V in the
downstream direction. Also, if the arc is rela-
tively flat, the self-induction effects of the bound
arc vorticity will be negligible; that is, q.<«V.
When such conditions are fulfilled, the vortex
velocity-force system can be “linearized” and the
aerodynamic force intensity components F, and
F, (normal and parallel, respectively, to the free-
stream velocity V) then become

F,=pVXTt (4)
F,=pg: X Tt (5)

For the particular case of a flat lifting-line seg-
ment, equations (4) and (5) reduce to the familiar
forms

L'=pVXTt (6)
D,=pq. X Tt (M

for the lift and induced-drag loading intensities.

Under linearizing assumptions, the aerodynamic
force component acting on the bound arc in the
direction normal to the free-stream velocity V
is given by

L— f (VX TE) - n]n ds ®)

where n is a unit vector which specifies the direc-
tion chosen to define the lift force L. The compo-
nent acting parallel to V is given by

D,— f [pqs X T't) ds )

where D, is by definition the induced drag.
Physical wing systems.—In most practical ap-
plications of lifting syvstems, the maximum attain-
659943—63——2

able value of T is sufficiently small that use of the
linear relations is quite valid. Linear theory,
assuming small induced velocities compared with
V and negligible wake deformations, will therefore
be used in the remainder of this paper.

In the theoretical treatment of lifting systems,
the physical wings are replaced by a system of
bound vortices which is assumed to be rigidly fixed
in a steady flow and hence capable of sustaining an
aerodynamic load. For cases where the spans of
the various lifting surfaces comprising the physical
system are large relative to the maximum opera-
tional value of the circulation T,,,, the physical
wings may be replaced by individual vortex lines
possessing equivalent circulation distributions.
For more detailed analyses, or when the circulation
is large compared with the span (highly loaded
spans), the chordwise or streamwise distribution
of the bound vorticity must also be considered, as
well as the wake deformation effects, and the
system must be represented by bound-vortex
surfaces. In the sequel, the systems to be
discussed are limited to bound-vortex lines and
arcs, and the results, therefore, apply directly to
physical systems with moderate to large spans or
with relatively small maximum lift coefficients.
Discussion is restricted to systems possessing a
plane of symmetry, and this plane is assumed to
lie parallel to V. The aerodynamic lift is then
defined as the force component in this plane,
acting normal to V.

THE LIFT AND DRAG FORCES

The induced lift of nonplanar systems.—For the
general nonplanar lifting system, there exist com-
ponents of induced velocity g, parallel to V due
to the bound vorticity of the system itsell. The
source of these components is indicated in figure 2

Ficure 2.—The induced-lift velocity diagram,
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for the case of an arbitrary arc shape. TUnder
the assumptions of small induced velocities, g
mav usually be neglected in comparison with V
The induced lift is considered in more detail in a
subsequent section.

The induced drag of nonplanar systems.—The
induced drag of nonplanar systems can be calcu-
lated, in theory, by the same methods used for
planar systems, only the mathematical manipu-
lations may become extremely complex because of
the curved paths along which the integrations
must be carried out. The expression for the
induced drag of a symmetrical, arbitrary are
specified by z(y) (fig. 3) and possessing an arbi-
trary cireulation distribution specified by T'(x)
is now derived to illustrate the basic effects
introduced by the span curvature and to provide
the fundamental integrals needed for determining
the induced drag of arbitrarily loaded systems.

Consider first the differential of velocity dq.”
(fig. 4) induced at the point Py, z) of the arc by

. dr .
the vortex filament of strength s ds emanating

from point P’(£,9).
tion of this velocity is

dq:P“l 1( V>(1F (10)

47 r

The magnitude and direc-

Only a component of this velocity will be effective

z

z(y)

Fierre 3.—A lifting arc of arbitrary curvature.
z
(m ‘V
s
d
)
r%) :
"

Jq § ‘}\ b72 y

(r-8)"

Ficure 4.—The force and veloeity relations for an arbi-
trary lifting are.

in producing induced drag because of the curvature
of the span. With the notation shown in figure 4
this “effective downwash’ becomes, in scalar form,

! —cos (r1— B)Ple S

g:") =5+ (an
where the subscript P denotes conditions at the
fixed point P. To obtain the total effective
downwash at P due to the entire wake vorticity,
equation (11) is integrated along the arc as
follows:

1 (1 dr
VP —— p— 3 —_ -
(@) esr 41rf ;oS (r—0)p 75 ds (12)
vary with the arc coordinate s,

while 7 is constant for a given point P. The total
induced drag is then obtained by the relation

Here r, 9, and /[F

$ S
Di:pftr(s) o Leos (=), s as ()
J =Sy J =8y
where the prime denotes the variable of the inner
integral and the subseript ¢ denotes the endpoint
value for the arc-length coordinate «.

In general, it is more convenient to integrate in
terms of the (artesian variables ¥ and ¢ (fig. 4).
Equation (13) can therefore be transformed by
use of the relations

T
(1.\-:\/ 1 +<Z-y> dy (14)
ds' =+ 1+<d’7 ds (15)
to vield
L d"
be 47ff \/ +<dJ
fbb/; 1 ((]é cos (t1—6)pdt dy  (16)
where
r=[(z—n)*+y—81" (17

and b’/2 is the length of the projected span along
the  (and #) axis. The [unction cos (1—8)p can
be expressed in terms of u, z, £ and » by substitut-
ing for the various terms on the right in the
following identity:

(18)

cos (r—8)p=cos 7 cos 6+sin 7 sin 4§
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From the geometric relations of figure 4, the
following relations are evident:

N (19)
cos |:1+<d >] /
O8I T &0
L dzjdy
sin r—[1+<:§; _2:]1,2 [1 +<(IJ)2]1 - (2D)
sin = (z=n) (22)

[(e=m)*+ -5y

Substitution of these relations into equation (18)
and dropping of the subscript P, yields

| -9+ =)
cos (7—9):" ):lw [(z—n)? +(,/ £)7)1/2
(l?/
(23)
Substituting this expression into equation (16)

and rearrangement gives the final relation for the
induced dragin terms of the ('artesian coordinates,

)
o —+5 (z—n
f sr dy dgdy (24)

e de L 2=+ (y—8)?

Wi h this relation the induced drag of any airfoil
whose spanwise curvature z(y) is known can be
caleulated when the circulation loading T'(y) is
specified. Equations (8) and (24), thereflore,
determine the induced-drag polar for any non-
planar wing of specified geometry.

When the fact is considered that T, dT'/d¢, z, and
n may themselves be involved functions, the diffi-
culty of obtaining an analvtical solution for equa-
tion (24) is obvious and, in generel, machine com-
putation must be used. In addition, the so-called
“principal value” of the inner integral must be
taken and this operation requires the use of special
techniques. Equation (24) applies directly only to
the case of a single lifting arc.  For the case of two
superposed ares, such as shown in figure 5, calcu-

iy

Fioure 5.—A lifting system of superposed ares.

lation of the total induced drag of the svstem re-
quires the solution of four double integrals of the
type in equation (24), two of which may be con-
siderably more complex in form. In general,
solution of a system of N superposed arcs requires
the cvaluation of N? double integrals of the type
shown.

In many cases of practical concern, however,
one is not interested in solving equation (24) or a
svstem of such equations by using an arbitrary
circulation distribution I'(y), but rather by using
the particular distribution which will produce the
minimum induced drag for the given are geometry
z(y). This is particularly true in the present case,
where maximum wing efliciencies are of interest.
The problem of determining this optimum circula-
tion loading for an arbitrary system of lifting lines
was originally solved by Munk (ref. 2) by use of the
calculus of variations. The results of Munk lead
to the specification of the optimum circulation
distribution and also to a simple method for de-
termining the induced drag of the system, provided
the velocity potential for the flow about the vortex
wake can be determined. This method eliminates
the need for direct integration of equation (24).
The total results of Munk’s investigation are not
considered here, but two of the more basic
theorems evolved are histed for use in the sequel.

Theorem 1: The total induced drag of any
three-dimensional system of lifting elements is in-
dependent of the positions of the various elements
in the direction of the free-stream velocity V
(Munk’s stagger theorem). Thus, if all the lifting
elements of a system are translated, parallel to V,
into a single plane normal to V while the initial
circulation is maintained constant, the induced
drag of the resulting two-dimensional system will
be exactly the same as that of the three-
dimensional, longitudinally dispersed system.
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Theorem 2: When all the elements of a lifting
system have thus been translated to a single plane,
the induced drag will be a minimum when the
component of induced velocity normal to the lifting
element at each point is proportional to the cosine
of the angle of inclination of the lifting element at
that point. In terms of the velocities previously
defined, the condition for minimum induced drag
thus becomes

f cos (T—B)qu;”=%’ cos T (25)

where w,/2 is the constant of proportionality.
This relation indicates that the intensity of the
wake vorticity dI'/ds at each point P must be such
that the velocity component normal to the vortex
sheet is

(gz) ery=w, cOs 7 (tX‘X/> (26)

The condition is illustrated in figure 6 for an arbi-
trary arc shape.

Since the required vortex intensity dI'/ds cor-
responds to a specific circulation distribution
T'(s) along the lifting arcs, the potential flow
generated by the wake will give the desired opti-
mum distribution T'(s). The potential mayv be
determined by conformal transformations of basic
flows for many simple lifting systems. To obtain
the optimum circulation distribution, a conformal
transformation which will transform a known basic
flow into the flow about the desired wake form
is found, using the “free-stream’’ two-dimensional
vertical flow of magnitude —w, The resulting
transformed flow will then satisfy the require-
ment of equation (26) and will correspond to the
potential flow around a solid boundary having the
same shape as the wake from the lifting system.

Fraure 6.—The cffective-downwash relation for minimum
induced drag.

SPACE ADMINISTRATION

The velocity potential ¢ of the transformed flow
can be found at once from that of the basic flow.
In particular, since by definition

FP:¢Q'(IS:(¢2‘<P1)P @7
the desired distribution of T' along all lifting lines
is determined. Further developient and applica-
tion of these results is carried out in the following
sections.

THE PRINCIPLE OF VORTICITY ATTENUATION

WAKE ENERGY AND CIRCULATION RELATIONS

Consider a flat lifting line operating with any
arbitrary symmetrical distribution of circulation
I'(y). Let the maximum value of this function be
Tae: (Mot necessarily the value for 1(0)). The
law of vortex continuity requires that all the
vortex filaments comprising the line continue
downstreamn unaltered in strength. Thus, the
circulation in any circuit surrounding the vortex
wake leaving a semispan (fig. 7) must be equal
to the circulation existing at the center of the span
I',=T(0) by Stokes’ theorem,

S
l‘osz ¢-dS

and the total circulation of the wake vorticity
cannot be altered. The kinetic-energy content
of the wake, however, corresponding to the
induced drag on the wing, may vary considerably
even for a constant value of T',, depending upon
the form of the function T'(y). Thus, even
though two wings may have equal values of lift
and T, their induced-drag values may be quite
different. The circulation value and the lift
do not in general uniquely determine the induced
drag; T'(y) is also very important.

Fiaure 7.—The relation of wake and bound vorticity.
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A simple illustration of this fact is the Rankine
vortex flow. If the core diameter of such a
vortex is specified along with the intensity of the
vorticity, the circulation T' and kinetic energy of
the total flow are determined. If a second
vortex of larger core diameter but of equal circu-
lation is considered (fig. 8), it is evident that the
kinetic energy of the second flow will be less even
though it possesses the same circulation as the
first. Thus, if these two vortices are considered
as the wakes from two different wings (ref. 1), it is
apparent that theinduced dragof twolifting systems
can be varied considerably by changes in the spatial
distribution of the trailing vorticity. These facts are
pointed out heremerely to emphasize that despite the
need to preserve the total wing circulation, no
unique restriction is placed upon the induced
drag which accompanies this circulation.

Effects of spreading vortex wakes.—The effec-
tive downwash producing induced drag on an
element of a lifting line at point £ due to a vortex
line of strength dT" at point P’ (fig. 4) is

11dr r,V
P —_ - - e
(dqz )eff (4‘" r ds d8> rXV n
where n i1s a unit vector normal to the lifting

element at P; nztx‘!f In order to minimize

(dgsP)esr and hence the induced-drag differential,
three conditions are desirable: (1) the value
of dI'/ds should be small, (2) the length r should

be large, and (3) the vectors ; and n should be as
nearly parallel as possible. These conditions

can be satisfied by spreading the lifting elements
over as large an area as possible.

Figure 8.—The velocity distribution for two vortices of
different radius.

An example of the practical application of this
principle is the biplane wing. If, for illustration,
an elliptically loaded vortex line possessing a
maximum circulation T, (fig. 9) is split into two
separate elliptically loaded lines with equal maxi-

mum circulations of % I', and separated vertically

by a distance g, then for any pair of interacting
vortex elements v, and v, 1t is seen that the above
three requirements are fulfilled. The intensity of
eaca trailing vortex filament has been reduced, the

. . r
distance » has been increased, and the vectors -
r

and n are more nearly parallel. As the distance
¢ is increased, or as the number of separate lifting
lines is increased (multiplanes), the efficiency of
the system of course increases. A second practical
example is the wing with an end plate (fig. 10).
The same principle of diffusing or spreading the
vortex lines of the wake is used to reduce the
induced drag of the wing. The vortex filaments
of the main lifting line branch at the end plate as

shown, so that for a given value of T',, d_i‘ along the

main span is less than for the plane wing.
Wake momentum—Kkinetic-energy relation.—
The principle just asserted is in reality merely a

V2

-

~—
&3

|

b }

Ficure 9.—Attenuation of vorticity by a biplane wing.

@D

rl—
&1

N\

Ficure 10.—Attenuation of vorticity by use of end plates.
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direct consequence of the momentum-—Kkinetic-
energy relation for airfoil wakes (ref. 2, appendix
B). In order to produce a given lift force an
airfoil must impart a definite vertical momentum
increase to the airstream, and the kinetic energy
of the wake motion must come from the thrust
work done by the wing in overcoming the induced
drag. For a given momentum change, the wake
kinetic energy will decrease if the wake vertical
velocity is decreased while the mass of air affected
is increased. In vorticity spreading, such as
caused by increasing the span of a wing with
constant lift, the local induced wake velocities are
reduced since the intensity of the vorticity at any
point is lowered (fig. 8), and a larger mass of air
is affected. Thus, the total kinetic-energy content
of a unit length of the wake is decreased hy vor-
ticity spreading while the lift is unaffected.

In the development of various lifting-system
configurations which will possess increased aero-
dynamic efficiency, therefore, only those which
satisfy the principle of vorticity spreading or
attenuation may be expected to have decreased
induced drag. A generalized treatment of the
relation between airfoil drag and wake energy is
given in reference 3.

THE EFFECTIVE ASPECT RATIO OF NONPLANAR
LIFTING SYSTEMS

THE LIMITING CASE OF THE ELLIPTICALLY LOADED LINE

By application of theorem 2 of the preceding
discussion it can be proved that the optimum
circulation distribution for a flat lifting line is
elliptical in form:

r<y>=ro,/1_(%?/)2 28)

Since both 7 and 6 are zero for a flat line, equation
(25) reduces to the requirement that

p_Wo
gz = 5 (29)

so that the downwash must be constant across the
span. When the potential of the flow about a flat
plate wake is determined, the elliptical distribu-
tion of equation (28) results. Since the down-
wash i1s constant across the span, it follows that
the desired T distribution is obtained by use of the

AERONAUTICS AND SPACE ADMINISTRATION

elliptical-planform wing and that the elliptical
lift-loading-intensity distribution

L'<y>=L;\/ (%Y (30)

will give the minimum induced drag for flat or
planar monoplane wings.

It is shown in three-dimensional airfoil theory
(ref. 4) that the lift and induced drag of an
elliptically loaded flat wing are

L:Z oVT,b (31)
Di=’g’ pT,? (32)

where b is the span length. Since the wing aspect
ratio is defined by

A= (33)

b2
S

where S is the wing area, the corresponding lift
and drag coefficients become

T,

Cr=3 oA (34)
r,?

Ong W A (35)

The resulting induced-drag polar is therefore given
by
O

JDi:']rA (36)

This expression is actually a special case of a more
general relation which will be derived subse-
quently, and serves as a convenient basis for
comparing the efficiencies of various lifting
systems.

OPTIMALLY LOADED NONPLANAR SYSTEMS

The drag polar.—In order to determine the
induced-drag polar corresponding to the optimum
circulation loading for a nonplanar wing, such as
represented by the generalized arc of figure 11,
use is made of the basic relation of theorem 2

F2v .
D w,cos 7
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z

Ficure 11.—The relation between the aerodynamic force
and the lift.

where F’ is the aerodynamic force loading inten-
sity. Since F’ cos 7=1’, this relation may be
rewritten as

Dl w,
e (38)
where w,/2V is a constant. Therefore the ratio
D;/L’ is constant at each point of the are, and thus
the total induced drag can be written as

D=L ﬁ, (39)

Equation (39) can be expanded to give

1.2
D,= R (40)

bri2
200 [ 1)y
Wo J-v'/2

where the factor 2 corrects for the velocity w,
which applies to the doubly infinite vortex wake
of a two-dimensional flow, as will be clear from
the illustrations of the next sections. This drag
relation can be nondimensionalized by using the

relation 7=b,—y/2; to yield
( (41)
I (b >f LA
<b > -1 o
Let
Ty/w, _
_b//2 —NA (42)
and
1
f 11* dv—B (43)
_l 0

then

LZ
D=

T (BN 41)
5 V0"

The induced-drag polar can therefore be written as

—_ CL2
KA
b2
5
be called the geometric aspect ratio of the curved
span.

The effective aspect ratio.—Comparison of
equation (45) with equation (36) suggests the con-
cept of the effective aspect ratio A, for evaluating
the efficiency of nonplanar lifting systems. If the
same wing area S and span b of an elliptical plan-
form flat wing of aspect ratio A are also used as
the basis for calculating the coefficients of a non-
planar system of span b’ (as indicated in fig. 12),
the following relations can be defined

Cp; (45)

where K=BN, and A’'= The factor A" may

b=yb’ (46)

16 A

Equation (45) then becomes
()2
K

7 A

CDi =

(48)

Thus, the induced-drag polar for any nonplanar
system can be expressed as

%

Coi=riA

(49)

where A is the aspect ratio of the given flat, ellip-
tically loaded wing being used for comparison, and

y ==t/

FigUurRe 12.—The span of a nonplanar wing.



12 TECHNICAL REPORT R—139—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

k is an efficiency factor which is constant as long
as the optimum circulation distribution exists on
the nonplanar lifting system, where

)
= <b ) f LT
Since the coeflicients (', and Cp; for the flat and
nonplanar wings are based on the same area, the
two systems being compared will experience equal
lifts at equal values of (' and dynamic pressure.
But for cases where £>>1, the nonplanar system
will be more efficient than the optimum flat wing;
that is, the nonplanar system will have less induced
drag than the flat elliptical wing for equal total lift
forces. If k<1, the nonplanar system will be less

efficient. These facts may be simply expressed in
terms of the effective aspect ratio A4, where

(50)

Apy=hkA (51)
so that
_ 07
ODi_ﬂ'Agff (52)

It is obvious from the preceding development
that any nonplanar lifting system of span b’ can
be compared with any flat-span elliptical wing of
span b and area S. However, the usual problem
which is of primary interest is that, given a par-
ticular flat-span elliptical wing (the most efficient
flat wing), how do various modifications affect the
efficiency of the wing, and in particular, what mod-
ifications will result in an increase in efficiency.
Since certain modifications may result in a span
change, such as curving a flat wing into an arc
while keeping the total arc length equal to the
length of the original flat span, the factor ¢ is nec-
essary to account for span-change effects. When
comparing systems in which the spans are held
equal, ¥=1.0. The particular convenience of the
definition of k, as given by equation (50), for com-
parison purposes will be evident in the subsequent
theoretical development.

In these derivations, no mention has been made
of the physical nature of the nonplanar lifting
system. Indeed, the induced drag of the system
is dependent only on the spatial intensity distribu-
tion of the lift (or aerodynamic force) and is quite
independent of the physical means used to produce
this distribution. Transformation of a given spa-

tial distribution of circulation into a physical lift-
ing systemn can be accomplished in, theoretically,
an infinite number of ways, but, in the usual case
practical considerations and compromises deter-
mine the manner in which this must be done. The
preceding theory, however, provides all the basic
information needed for design purposes. Prae-
tical application aspects are considered in the last
section of this paper. The problem of determining
the circulation distribution necessary for obtaining
the maximum effective aspect ratio of an arbitrary
system is now considered.

DETERMINATION OF THE SPAN LOADING DIS-
TRIBUTION FOR MINIMUM INDUCED DRAG
The conditions of theorem 2 for minimum

induced drag require that the vorticity distribu-

tion in the wake be such that qz- n=w, cos = at
every point of the wake. Thus, far downstream
of the lifting system the wake will move normal

to itself locally with a velocity w, cos 7.

It is assumed here, of course, that the wake
inclination and deformation effects are negligible.
Then the effective induced flow at the lifting
system will be (w, cos 7)/2, since the vortex wake
is only semi-infinite with respect to the plane
containing the system (all longitudinally distrib-
uted lifting elements having been translated into
a single plane, by theorem 1).

If a plane is taken far downstream normal to
the wake, the flow will consist of the two-dimen-
sional motion due to the wake vortex lines. The
section of the wake made by this plane will be
exactly the same as that of the lifting system
(fig. 13). If a vertical flow —w, is now super-
posed on this two-dimensional wake flow, the

Ficure 13.—The flow regime for calculation of the poten-
tial distribution aloug a lifling are.
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wake will be brought to rest so that the flow will
be steady, and the resulting velocity field will
correspond to the potential flow about a solid
boundary having the same section shape as does
the wake. Thus the jump in potential ¢ at any
point of the wake (fig. 13), or at any point of the
analogous solid boundary, specifies the circula-
tion at the corresponding point in the bound-
vortex system since

I'p= (¢2_¢1)P’ (53)

The vertical flow in the plane of the lifting system
will be —w,/2, or halfl that existing far downstream.
Determination of the potential of the two-dimen-
sional wake flow therefore establishes the value
of k corresponding to minimum induced drag,
according to equation (50).

Determination of the velocity potential ¢ for
arbitrary flows is in general difficult, but can be
carried out for many simple lifting line systems
by conformal mapping. To establish the poten-
tial, a transformation must be found which will
carry a basic, known flow with “frec-stream”
velocity —w, into the desired flow in the trans-
formed plane while preserving the flow —w, at
infinity. Then at corresponding points in the
two flows the same velocity potential and stream
function values apply so that I' becomes known
for the lifting system (transformed plane) by
means ol equation (53). Use of conformal map-
ping for determining the optimum T loadings and
corresponding £ values for lifting arcs and closed
lifting hines is illustrated in the next section.

In general, the transformation function neces-
sary to obtain the flow about arbitrary forms
cannot be found easily. This situation is es-
pecially true for complex systems such as super-
posed lifting arcs and lines. There exists, however,
a quite satisfactory solution to this problem. By
use of the electrical potential-flow analog, the
potential distribution for even complex systems
can be determined easily. With this device,
advantage is taken of the fact that the flow of
electrical current in a uniformly conducting
medium is directly analogous to incompressible
fluid flow since both satisfy Laplace’s equation
V2e=0. When identical boundary conditions
are iniposed on the two flows, measurements of
the electrical potential along the boundary can be
converted directly to the velocity potential distri-
bution along the boundary (lifting system) in the

659943 -63——3

analogous fluid flow. The principle of this method
and its application to the solution of a number of
complex systems is illustrated in the next section.

SOLUTIONS FOR THE EFFECTIVE ASPECT RATIO
OF OPTIMALLY LOADED ARCS

The first class of nonplanar lifting systems that
will be investigated by means of the foregoing
theory consists of symmetrical arc segments.
Such forms are ol particular interest because of
the siplicity of construction of the airfoils which
may be derived from them and because the
mechanical design of such wings follows closely
the usual procedures for flat wings. In addition,
the effects of such factors as dihedral angle and
aeroelastic deformation of the span on conven-
tional flat airfoil efficiency can be estimated with
simple arc forms. As special cases of arc [orms,
the efficiency factor for lifting lines which form
closed ellipses will be investigated for the lamily
0<e=<1 where ¢ is the ecceuntricity. The circle
will be included as a lower limit (e=0) and the
straight line as the upper limit (¢e=1) of the ellipse
forms.

SOLUTIONS BY CONFORMAL TRANSFORMATION

In order to illustrate the application of
conformal mapping techniques to the solution of
equation (50), the £ values of the family of cir-
cular arcs and the family of closed ellipses will
be determined.

Circular-arc segments.—For present purposes,
the family of lifting lines represented by circular-
arc segments can be expressed in terms of a camber
factor 3, where as shown in figure 14

B=4 (50

Circular arc---"

FicUure 14.—Distances used to define the camber factor
of a circular-arc segment.
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The ratio of depth d to projected semispan length
b’/2, therefore, defines each specific are of the
family as the arcs proceed from a straight line
(8=0) to a semicircle (3=1) for the range

0<B=1 (55)

In order to determine the potential distribution
along any member of this family of arcs, the two-
dimensional flow about a cirele in the {-plane
(fig. 15) is transforimed into the flow around the
desired arc in the z’-plane by means of the Jou-
kowski transformation

2=+ (56)

Here ¢(=&t+in) and 2’(=y-+iz) are complex
variables. The Joukowski transformation will
transform the cirele of radius ¢ whose center is
located on the positive p-axis and which passes
through the point / on the #-axis (i.e., the point
£=1) into a circular-arc segment in the z’-plane,
as shown in figure 15. In particular, the point

4

§=0 will transform into the point 2z/'=2/=7-

&

Thus the camber {actor can be written as

d 2ya— .
since the distance d is twice the 5 coordinate of
the circle center in the ¢-plane. The radius a

becomes a function of B8 by the {following
definitions:
a=npl (58)
B=Ap*—1 (59)
.

- ol

L-plane 2'-plane

Ficure 15—The Joukowski transformation relations for
circular-arc segments.

or

P=FA1HE (1=p=.2) (60)

and

a=I\ 1+ (61)

The cirele center is located at {=¢,=i(ya?—(?)
=1B1.

The complex potential of the flow about the
circle in the ¢-plane due to a uniform flow —aw,
from infinity as shown in figure 15 is

() =i ey @
Wo—in| c-o— T ] @

(The flow and are in the z’-plane are inverted here,
but this inversion has no effect on the determina-
tion of I.) The velocity potential ¢ is, therefore,

o) =RV ()=, | -8+ 0 )

(63)

where R denotes the real part of W(¢). This
equation can be nondimensionalized by dividing
all terms by 8’/2. With the definitions

(64)

a:b,i/g (65)

and after rearrangement, equation (63) becomes

2 <>‘_§
.o\ =2/
? +4 62+<)\_§>2

since a’=p?? and l:% (%)

(66)

The equation of the circle is, in nondimensional
form,

me 1/2
A= i(%—«ﬁ)l +§ (67)

for ——g <o= IQ) Under the transformation of equa-
tion (56), the corresponding points in the z’-plane
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are given by the nondimensional coordinates

v o4 -

'Y—_b//Q—U‘I‘(Uz A?) (68)
z M4

= 7/”2—)""('0"2 A2) (69)

Thus, at corresponding points (¢, A) and (v, §), the
velocity potential (eq. (66)) has the same value
and the potential distribution along the length of
any circular arc with specified 8 becomes known.
From equation (53), the circulation distribution
/T, can be determined. Figure 16 shows the
nondimensional circulation distribution as deter-
mined by this procedure for four arcs of different
camber, 3=0, 0.4, 0.6, and 0.8.

From such plots, the efficiency factor & can be
determined by equation (50). The value of the
factor

(Tofw,)
b2

(70)

is given by the transformation for the point
2’ =1(2ya2—12), and the integral

SYSTEMS 15

may be determined graphically or analytically
from the potential distribution.

The only remaining unknown in equation (50)
is the factor ¢. Since, by definition,

=1 (72)
the value of ¥ depends upon the span b of the flat
elliptically loaded line to which the circular-are
segment of projected span b’ is being compared.
The actual significance of this factor is discussed
subsequently; but for the present, y is assigned
the value 1.0. This value of ¥, of course, means
that the circular are is being compared with the
flat line having an equal span and producing
equal lift.

The variation of the efficiency factor & with the
spanwise camber factor 8 has been determined for
the entire family of circular-arc segments (0 £ g <1),
and is presented in figure 17 for the case y=1.0.
The efficiency of the circular arc is seen to increase
continuously with spanwise camber, reaching a
maximum value of 1.50 when the arc becomes a

L r ; - semicircle (3=1.0). TFor this case, the effective
f_l T, @) aspect ratio of the arc is 50 percent greater than
1.0 : S , :
ST i 771» S 3 ]
- 1 . \\ q o0
_ ! | < \\\\ -4
: B . N
o SR S
L I : i . L :
fo ‘ i i J‘ 3 i ‘ \
4 - | L N\
‘ ! , ‘ \
| \
|
2 +
|
r I } I
0 | 2 3 4 5 6 7 8 3 i.0
4

Frcure 16.—The optimum nondimensional eirculation distribution for several members of the family of circular-are
segments.
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Ficure 17.—The variation of the efficiency factor with
the eamber factor for the family of circular-are segments.
v=1.0.

the geometrical aspect ratio of the elliptical-plan-
form wing of equal span (b=0’). Thus the opti-
mally loaded are having a camber factor of 1.0
will have 33.3 percent less induced drag than the
flat, elliptical-planform wing producing the same
total lift force. The efficiency gain for small
amounts of camber is initially small, reaching a
k value of only 1.05 at 8=0.316. The relative
curvature for various amounts of camber is indi-
cated in figure 18.

From the results of figure 17, it appears that
very sizable gains in induced-drag efficiency are
aerodynamically possible with the use of circular-
are curvature of the span, provided, of course, the
span is optimally loaded.

It can be shown that the curve of figure 17 is
actually a branch segment of the parabola

k=1.0040.508" (73)

Ficure 18 —Relative curvature of a series of eireular
ares of equal span with varied camber.

for 0 =8=1, for the case where y=1.0. For other
values of ¢, equation (73) becomes

e (1:0040.598%)
=)

(74)

Complete ellipses.—A particularly interesting
case of lifting arcs is obtained when the arc is
extended to form a closed loop or curve. Ex-
amples are circles, ellipses, ovals, and rectangles.
Such forms are capable of attaining very high
values of k, much larger than those possible with
arc segments of moderate curvature. On the
other hand, however, the physical system needed
to obtain the circulation distribution for minimum
drag is much more complex.

As an extension of theorem 2, it is shown in
reference 2 that the condition for minimum in-
duced drag on a closed lifting curve is that the
circulation distribution dI'/ds be such that the
wake induced velocity is constant and equal to
w, (far downstream) at all points of the area
enclosed by the vortex wake. Thus, the air
passing through the lifting curve in the three-
dimensional flow will be enclosed by the vortex
sheet and will move downward with the velocity
w, far downstream. In the plane containing the
closed lifting curve, the induced velocity at all
points within the boundary area is given by

W, .
Q=7 (75)

When the uniform flow —w, is imposed on the
wake flow, the entire wake “body”” will be brought
to rest and the resulting steady potential flow will
vield the desired potential distribution at the
lifting curve.

The Joukowski transformation (eq. (56)) will
map the cirele |¢]=a into an ellipse, in the 2’-
plane, whose eccentricity is given by

2al

ot

(76)

and whose major- and minor-axis lengths are,
respectively,

2 2

Q“jl 77)
2__J2

2“al (78)
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Let a=I/h, where h is a constant for a given
ellipse. The eccentricity then becomes, from
equation (76),

2 T jf - (79)

From the definition of the eccentricity, it follows
that

bl
5 e=l (80)

DOf —

since the distance from the origin to a focus of the
ellipse is 2l. Thus the radius a is given as a func-

tion of h by
o1
" =y
By use of the nondimensional variables
"
A= b //2 (64>
_ &
0= b /2 (65)
a 1 (82)

b2 (1+hY)

the equation of the circle in the ¢-plane becomes

[

1
for the range ‘"<1_+72> == (1 —|—h2>

The velocity potential of the ¢-plane flow is
obtained from an expansion of equation (62)
yielding

© 1 A

N AR
W, -é‘

(84)

The points (y,2) in the z’-plane corresponding to
the points (£,7) in the ¢-plane are given in non-
dimensional form by the relations

Yy h \ o
7_b'/2“"+(1+h2> EEB (85)

At corresponding points (as given by eqgs. (85)
and (86)), therefore, the value of ¢ (eq. (84)) is

the same and the potential distribution around
the ellipse is established.

In general, it is more convenient to describe
the shape of the ellipse in terms of a “camber”
factor 8, the same as was done for the circular ares.
Thus the camber of the ellipse is given by

Minor axis  ——
~ Major axis " 1—e (87)

The camber is an elliptical function of the ec-
centricity, and is plotted in figure 19. Equation
(79), therefore, determines A as a function of g.

The circulation distribution ™ (v) 1s obtained

by the relation

( )= (88)

Lo, 27 Po,1

as shown in figure 20. The value of I'/T, as a
function of v is presented in figure 21 for the range
B8=0 to 1.0. The case =0 gives the elliptical
distribution of the straight line. The case g=1
gives the distribution for the full circle. The
intermediate cases 0<<3<1 apply to ellipses. It
thus appears that the elliptical distribution applies
to all complete ellipse forms including the special
limiting cases of the line and circle. The effi-
ciency factor k for the family of ellipses 0 =8=1
has been determined by conformal mapping and is
presented in figure 22 as a function of the camber.
Here again, the value of ¢ has been taken as 1.0
in equation (50). The efficiency factor is ob-
viously a linear function of the ellipse camber,
and reaches a maximum value of 2.0 for the circle
form (8=1.0). This value of k indicates that the
lifting circle, or annular airfoil, has an effective
aspect ratio 100 percent greater than the flat
elliptical wing having equal span and producing
equal lift. This particular result has long been
known, and the possibilities of realizing such
efficiency increases have prompted considerable
work on ring-wing lifting systems (refs. 5 and 6,
for example).

The efficiency factor for the family of ellipses
can be expressed in terms of 8 by the relation

7

k=g+1 (89)

for 0=3=<1.0, for the case where y=1.0. For
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Ficure 19.—The variation of ellipse eccentricity with the camber factor.

Ficure 20.—The points used to determine the circulation
loading of closed ellipses.

arbitrary values of ¢, this relation becomes

k:Bz;l

The considerations of this section have been
limited to the calculation of the efficiency of lifting
circular ares and full ellipses by conformal trans-
formation techniques. These forms are by no
means the only ones solvable by conformal map-
ping, but are appropriate cases for illustrating the
procedure. In general, however, it is quite diffi-
cult to determine the transformation which will
give the desired z’-plane flow. A method is now

(90)

discussed which allows accurate determination of
the & value for any arbitrary lifting system by use
of a simple electrical analogy.

SOLUTIONS BY ELECTRICAL ANALOGY

When an electrical current is passed through a
uniformly conducting sheet (two-dimensional
flow), it can be shown that the resulting distri-
bution of electrical potential £ must satisfy
Laplace’s equation

V2E=0 91)
in two dimensions, say ¥ and z, where the uniform
flow at infinity is parallel to the z-axis. Since the
velocity potential ¢ of two-dimensional, incom-
pressible fluid flows also satisfies Laplace’s equa-
tion

Vip=0 (92)

there exist the following direct analogies between
the fluid and electrical flows:

Fluid Regime

q
¢=f q-ds

4=—Ve

Electrical Regime

€

’zfse‘ds

e=—V[ (93)



THEORY OF INDUCED LIFT AND MINIMUM INDUCED DRAG OF NONPLANAR LIFTING SYSTEMS 19

1.0

—
\\
.8
\\\\

.6
T
Lo

4 \

.2

o] . .2 .3 4 .5 .6 7 .8 .9 1.0

4

Figuvre 21.—The optimum nondimensional circulation loading for closed ellipses.
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Ficure 22.—The variation of the efficiency factor with
the camber factor for the family of closed ellipses.
¥v=1.0.

where
€ electric intensity vector
E electric potential

Application of the equation of continuity to each
system leads directly to equations (91) and (92)

div q=V - Vo=V2p=0 (94)
div e=V . VE=V:E=0 (95)

Thus, the equipotential lines ¢==Constant in
fluid flow correspond directly to the equipotential
lines E= Constant in electrical flow, when identical
boundary conditions exist.

0=g=1.0.

Analogy between aerodynamic and electric pa-
rameters.—It has been previously shown that in
order to determine the value of £ the dimensionless
constant K has to be determined for the flow about
the given boundary form (representing the lifting
system), where

EZU ; f‘l — dvy
The electrical analog of this equation is

@2”’6/ [ >

where AE is the potential difference equivalent to
I'» (see eq. (53)), (AE), is the potential difference

(96)

(97)

across the boundary center (=T1,), and C%

the change in potential per unit length in the
direction of the uniform current at infinity.

Since K and K, are both dimensionless con-
stants, they must have the same numerical value
for geometrically similar flows (equivalent bound-
ary conditions). This fact allows the experi-
mental determination of the value of K for any
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potential flow regime. In order to construct the
analogous electrical flow, a sheet of uniformly
conducting material is mounted between two
parallel electrodes as shown in figure 23(a). The
form or boundary representing the lifting system
is then cut into the conducting sheet, the size of
this boundary being small compared with the
dimensions of the sheet so that the flow near the
outer boundaries of the sheet will be undisturbed
(fig. 23(b)). The cut representing the lifting
system causes the current flow to satisfy the
same boundary conditions as in the fluid regime
(velocity normal to the boundary is 0), and the

values of AE, (AE),, and (%) may be read

directly with a voltmeter. Thus, K, can be
evaluated by use of equation (97), and since the
values of K and K, are the same, the value of K
(eq. (96)) is obtained.

The various operational details of the electrical
analog system are not discussed here, as consid-
erable information has previously been published
on the practical problems attending the use of
such devices for other types of potential flow
studies. In general, the primary problem associ-
ated with the use of the analog is finding a
perfectly uniformly conducting sheet material.
There exists, however, a particularly convenient
material for such applications as the present one
in the form of a special conducting paper.! This
material was used for all analog studies reported
in this paper. The specific analog setup used in
this investigation is pictured in figure 23(c) and
was especially developed for these tests.

As an indication of the accuracy which can be
achieved with the analog system pictured in

. . Al
figure 23(c), the distributions for @E), as meas-

ured for the cases of a flat lifting line, a semicircle,
and a full circle are presented in figure 24, where
they are compared with the theoretical distribu-
tions as obtained by conformal transformations.
The excellent agreement is obvious. The values
of K, as determined for these three forms are
as follows:

1 Information on this material can be obtained from the paper ‘‘Analog
Field Mapping on ‘Teledeltos’ Recording Paper.” Copies of this paper
may be obtained from the Western Union Telegraph Company, Marketing
Department, Government and Contract Sales, 60 Hudson St., New York 13,
N.Y.

(a) The table with conducting sheet.

Ficure 23.—The electrical analog system used to deter-
mine the optimum circulation distributions.

(b) The conducting sheet with a circular boundary.

Frcure 23.—Continued.

Form K. K. (theo- | Percent
(measured) | retical) error

Tine___________ 3. 20 3. 14 +1.9

Semicirele_ - _ 4. 83 4. 72 +2.3

Full cirele_ - . 6. 42 6. 28 +2.2

In general, the accuracy of the values of K de-
termined by the analog, for all forms discussed in
this report, is believed to be within —1.0 percent
to 3.0 percent of the true value. A positive error
in K,, or K, has the effect of making the associated
value of the factor £ smaller than the true value.

Semiellipse arcs.—The efficiency factor k has
been determined for the family of semiellipse arcs
by use of the analog method. To determine the
value of K,, a given arc (corresponding to a given
value of B8, the camber factor) was plotted on the
conducting paper. A very narrow slit was then
cut along the arc to form the electrical boundary.
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(e¢) The entire analog system.

Ficure 23.—Concluded.
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(a) Line.
(b) Semicircle.
(e) Circle.

Ficure 24.—Comparison of the experimental analog
readings with theoretical predictions.

The arcs were all constructed to the same scale
with a constant semispan length of 2 inches. The
potential difference was then determined for 11

equally spaced points across the semispan (in-
cluding the origin) by use of finely pointed probes
attached to a highly sensitive electron-tube volt-
meter.

Figure 25(a) shows the plot of an arbitrary arc
form from which the boundary line is cut. The
slit used to represent the lifting arc line necessarily
has some finite width, and while measurement of
the potential difference is relatively simple for
flat portions of the curves (fig. 25(b)) some
question arises as to the proper position of the
probes when measurements are made along the
highly curved portions (fig. 25(c)). Theoretically,
the measurements are to be made at a point,
but physically, the measurements must be made
at two separate points, one on each side of the slit.
When the slit has appreciable curvature, the two
points on the intersecting ordinate may become
widely separated, as shown in figure 25(c). The
proper position of the probes in this case is de-
termined by the fact that the equipotential lines
must be normal to the boundary in the immediate
vicinity of the boundary. Thus, if at a given
spanwise point where AK is to be read, a normal
line to the curve is constructed through the point
before the boundary slit is cut, the potential lines
which would end on this point will lie along this
normal line in the vicinity of the slit. The probes
must, therefore, be placed not at points lying on
the line y=Constant, but at the intersection
points of the normal line with the edges of the
slit (fig. 26). The smaller the slit can be made,
the less will be the error incurred by using points
on the line y=Constant, of course. All points
were measured along normal lines in this investi-
gation, even though all slits were very narrow
(0.02 inch in width).

The value of K was determined by integration
of the potential difference distribution

AR ,
&‘ﬁﬂﬁﬁw (98)

D

and by using the measured values of (%) ) %;

and (AE),. In practice, <(fi—§> was taken as the

voltage difference across the sheet divided by the
distance (24.00 inches) between the lines of contact
of the electrodes, for each individual reading.
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Fi6tre 25.—The analog form preparation.

The value of & as a function of the camber 8 is
presented in figure 27 for the family of semiellipses
0=<B8=1,¢¥=1.0. The value of k reaches a maxi-
mum of 1.5 at g=1.0, which corresponds, of
course, to the previously discussed case of the
semicircle. The semiellipse arcs are considerably
more efficient than the circular arcs of equal span.

AERONAUTICS AND SPACE ADMINISTRATION
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Fraure 26.—Illustration of the method used to determine
the potential distribution on analog forms.
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Ficure 27.—The variation of the efficiency factor of
semiellipse ares with the camber factor. ¢=1.0.

This fact is shown in figure 27 where the circular-
arc efficiency is entered as a dashed curve. The
superior efficiency of the semiellipse arcs may have
been intuitively expected since the semiellipse arcs
are less curved over the central portion where the
aerodyvnamic force intensity is greatest; thus,
more of this force acts to create lift than is the
case with circular ares. The circulation distribu-

. r . . A
tion 1 (v) s shown in figure 28 for four semiellipse
4

arcs.

While only the specific case of semiellipses has
been discussed here, obviously it is possible to
treat arcs of any shape by the analog method.
For example, families of arc segments of ellipses,
parabolas, hyperbolas, and 2all other symmetrical
functions can be evaluated in a simple manner.
Complex lifting systems made up of a combination
of such arcs can be handled in the same manner as
single ares. This subject will be discussed in the
next section.
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Ficrre 28.—The optimum nondimensional ecirculation distribution for several semiellipse arcs.

In connection with the forms discussed pre-
viously, it should be noted that the direction in
which the arc or arc syvstem lifts is immaterial;
the value of k& depends only upon the curvature of
the arc. Thus the two identical arcs shown in
ficure 29 have the same induced drags for the
same lift force. In practice, however, one orienta-
tion may prove more convenient than another for
a specific application. The induced lift for the
two orientations is not the same. The induced
lift is positive when the local aerodynamic force
acts towards the local center of curvature of the
are and negative when this foree is directed out-
ward from the center of curvature.

SOLUTIONS FOR MORE COMPLEX SYSTEMS

Although single arcs of moderate curvature offer
an attractive means for increasing aerodynamic
efficiency because of their simple structural forms,
it is desirable to consider more involved geometri-
cal arrangements so as to gain an idea of the
relative values of effective aspect ratio obtainable
with more complex systems. The purpose of this
section, therefore, is to determine the efficiency
factor for a number of such lifting systems and
to draw some general conclusions as to the effects
of geometry variation on aerodynamic efliciency.
In general, the forms to be investigated are such

F\ /

=

Ficure 29.—Identical lifting arcs with different orienta-
tions of the lifting force.

that they may be considered as derived from the
basic flat span by various modifications to the
outer or tip sections, while the flat center portion
of the span is left unchanged. A few complex
systems will be considered in which the total span
is altered. The term ‘“‘complex” as used here is
intended to describe a lifting system made up of
a series of superposed arcs or segments, as opposed
to a “simple”” system consisting of a single arc or
line. All the results of this section were obtained
by use of the clectrical analog.



24 TECHNICAL REPORT R—139—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TIP MODIFICATIONS

End plates and vertical fins.—End plates and
vertical fins located near the tips of the wing have
long been used to increase aerodynamic efficiency
at high lift coefficients. Three commonly used
configurations have been investigated by use of
the analog, and the results are shown in figure 30.
Comparison of the values of k for forms A and B
clearly shows the beneficial effect, from an induced-
drag standpoint, of using large end plates. Com-
parison of forms A and C, representing an end
plate or tip fin and an inboard fin, respectively,
shows the detrimental effect of moving the fin
inboard (a decrease in £ from 1.22 to 1.14). In
such a case, much of the trailing vorticity is shed
inside of the tip and, as may have been anticipated,
leads to increased induced drag compared with
that at the tip location. Still, the inboard fins
provide an increase in L/D; over that of the flat
elliptical wing. In considering increases in effec-
tive aspect ratio, it must be realized, of course,
that only increases in the factor 1/D; are revealed.
Since profile and parasite drag always accompany
the physical wing system, the actual gains in L/D
must always be less than those in L/D;. This
effect will be considered in more detail in the next
section.

In the use of end plates or fins to increase the
effective aspect ratio of wings, care must be taken
to see that the end plate or fin i1s designed to

Form 8

| |
| sl

Form C

Fiecore 30.—Efficiency factors and geometry of end-
plate forms. All dimensions are given in fractions of the
semispan length.

operate with the optimum circulation distribu-
tion if the large values of £ indicated in figure 30
are to be realized. In the past, actual plates (no
camber) or plain symmetrical sections have often
been used to construct end plates which merely
served as simple physical barriers against the
spanwise flow. In order to realize the full aero-
dynamic advantages of such devices, however,
care must be given to more exact design of the
fins for optimum operational loadings. Much of
the original experimental data taken to evaluate
the aerodynamic efficiency of wings with end plates
are based on the use of such ‘shields” and are thus
not truly indicative of the results possible with
more carefully designed fins.

Treatment of many end-plate and fin configura-
tions by conformal mapping techniques is ex-
tremely difficult, even for very simple forms (ref.
7). Thus the analog method provides an especially
simple and valuable means for analysis of such
systems. Since many approximations usually
must be made in treating such problems by con-
formal analysis, the final accuracy of such results
cannot generally be expected to exceed that of the
analog procedure.

Curved tips.—A series of forms obtained by
curving only the outer part of the span is shown
in figure 31. In form A the outboard quarter of
the semispan consists of a circular are, as shown.
The reason for using such a shape is to move the
tip region of the wing, where the strongest
vorticity is shed (large dT'/ds), away from the
heavily loaded center of the span and thus reduce
the downwash at the center. The value of k=1.23
for this form is quite high. By adding a second
arc as in form B the increment in £ is about double
that of the single arc. In closing the tip region
between the ares (form C), the very high value of
k=1.52 is obtained. Form D has the tip curved
into a semiellipse of eccentricity ¢=0.82.

Closed-arc tips.—An interesting series of tip
modifications is that obtained by adding various
symmetrical closed curves at the wing tip, as
shown in figure 32. Forms A and B show the
effects of ending the span in ecircles of various
sizes. These curves appear to be highly eflicient
in increasing the effective aspect ratio, even for
the small circle. Forms C, D, E, and F show
tips fornmed of closed ellipses with various orienta-
tions. It is clear that the ellipses alined with the
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Ficure 31.—Efficiency factors and geometry of curved-
tip forms. All dimensions are given in fractions of the
semispan length.

major axis vertical are considerably more efficient
in increasing the effective aspect ratio than are
the ellipses with major axis alined with the hori-
zontal, in accord with the principle of vorticity
spreading. It also appears that a vertical ellipse
with large eccentricity is more efficient than one
with smaller eccentricity.

It should be emphasized perhaps that the
closed tips just discussed are not solid areas or
bodies at the tip, but are formed by open areas
bounded by a lifting line or arc. The free-
stream air passes through the open area of these
tips. In fact, the wake of these forms consists
of the core of irrotational air which has passed
through the tips, surrounded by the closed vortex
sheet emanating from the boundary. This
enclosed core of air has no circulatory motion
within it (as opposed to the normal tip vortex)
and translates downward with the speed w, normal
to itself far downstream.

Branched tips.—Another form of tip modifica-
tion consists of splitting the tip section of the
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Ficure 32.-—Efficiency factors and geometry of closed-are
tip forms. All dimensions are given in fractions of the
semispan length.

span into several separate branches or arcs,
and may be considered as an extension of the
curved-tip forms. Several such branched-tip
forms are shown in figure 33. Forms A, B, and
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Ficure 33.—Efficiency factors and geometry of branched-
tip forms. Al dimensions are given in fractions of the

semispan length.

C are dertved by using circular-arc segnents and
are constructed according to a definite pattern.
Form A is composed of circular-arc seginents in
which the arc length of each branch is equal to a
specified percentage of the semispan and the
various branches are identified by their camber 3
(where 8 has the same definition as previously
given for circular arcs). For form A, the arc
length of the first branch is equal to % the semi-
span, while all other arcs are ¥, of the semispan.
Forms B and C are constructed according to a
similar rule. Such forms give relatively large

increases in effective aspect ratio, are relatively
simple in geometry, and offer the possibility of
seroelastic construction, as is discussed sub-
sequently. Forms D and E are composed of
elliptical branches, and are less efficient than the
circular forms, for the relative sizes used. Form
E is the same as form D except that an outer
boundary has been added to close the gaps at
the outer extremities of the branches. Only a
slight increase in efficiency is gained by closing
the gaps. This result follows from the fact that the
vertical flow is aiready nearly equal to w, every-
where in the region between the branches even
before the closing boundary is added.

Some ambiguity may exist as to the manner in
which the analog potential readings are to be
made on such branched-tip forms. To clarify this
point, figure 34 is presented, which shows the
integration path used to determine the circulation
corresponding to a given spanwise station y, for
an arbitrary branched-tip form. The electrodes
may be placed on points 1 and 4 to obtain the
circulation around arc segment B and then on
points 2 and 3 for arc segment A; the total value
of AEis the sum of all such readings. Alternately,
readings can be made at points 1 and 2 and points

Ficrre 34.—The paths of integration for branched-tip
forms.
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3 and 4 separately and the results added alge-
braicallv. This procedure can be followed because
of the condition that AFE, ,=AFE, ;--AFE, s+AE;
since the change in potential must be zero when
passing around any closed circuit which does not
include a part of the boundary slit. The sub-
scripts represent the end points of the path as
shown. In the case of most of the branches of
the forms of figure 33, the internal paths (such
as between points 4 and 3 in fig. 34) have AE=0,
and this condition indicates that the velocity
between the branches is zero. This result may
be regarded as an experimental proof of Munk’s
results, which predict that the sum of the vertical
velocity of the free-stream wake flow —w, and
the induced velocity inside a closed lifting curve
will be zero when the lifting curve is optimally
loaded (ref. 2).
TOTAL-SPAN MODIFICATIONS

Closed semicircle.—Figure 35(a) shows a closed
semicircle wing. The k value for this form is
1.50, the same as was previously found for an
open semicircular arc. In fact, it can be shown
that the flow regimes for the two forms are
practically identical. This fact indicates that
for minimum induced drag with the closed form,
the flat side must remain essentially unloaded.

Semicircle with extensions.—The semicirele form
with flat span extensions shown in figure 35(b)
shows very little gain in effective aspect ratio
(k=1.07), despite the relatively large change in
geometry as compared with the flat-span wing.
When large end plates are added to this form,
such as shown in figure 35(c¢), the value of k is
raised to 1.30. As might be expected, closing the
open side of this form with end plates was found
to have no effect on £.

GENERAL CONCLUSIONS

The brief considerations of this section indicate
that appreciable gains in the effective aspect ratio
can be obtained by relatively minor alterations to
the tip region of flat wings for equal spans.
Some tip alterations can result in far greater
efficiency increases than those produced by radi-
cal modification of the entire span. For the
forms investigated here, it appears that modifica-
tions which tend to release the major portion of
the vorticity near the tip and over an appreciable
vertical area result in the greatest increases in k.
For the forms considered, it appears that increases
in &k of 30 to 50 percent are possible. On such
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(a) Closed semicircle wing.

(b) Semicircle wing with flat span extensions.
(e) Semicirele wing with flat span extensions and end plates.
Fiatre 35.—Efficiency factor and geometry of closed and

modified semicircle forms. All dimensions are given in
fractions of the semispan length.

forms as the branched-tip series, considerable
increases in k are possible by extending the arc
lengths of the branches while the span is main-
tained constant.

The results of this section serve to illustrate the
variety of complex forms which can be treated with
the analog. These procedures can be used not only
to establish the efficiency of arbitrary forms but
also to determine the effective aspect ratio for
wings with the span shape z(y) set by other design
considerations.

THE INDUCED LIFT OF NONPLANAR SYSTEMS

Unlike flat-span wings, nonplanar wings have a
component of induced velocity in the streamwise
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direction due to the bound vorticity and, de-
pending upon the lifting orientation of the system,
this velocity can be beneficial in increasing the lift
of the system for a given induced drag. While
for most systems the magnitude of the induced
lift is probably small, it is possible that some
highly curved arcs, say a semicircle, may have a
measurable induced lift.

THE INDUCED-LIFT INTEGRAL

With the use of the simple arc form and defini-
tions of figure 36, it can be shown that the induced
lift L; 1s given by the relation

L=£ f I'(s) [[ ris’) 257 a’s’] cos rds (99)

Thus, when the value of the optimum function
I'(s) has been determined by means of the fore-
going procedures for a given arc form z=z(y), the
induced lift accompanying this distribution of
circulation can be determined by equation (99).
The induced-drag efficiency parameter then
becomes

L+Lz
D,

EFFECT OF LIFT ORIENTATION

(100)

If the lifting arc is oriented such that the
aerodynamic force intensity F” is in the direction
of the local center of curvature (fig. 29) the sign
of L; will be positive and a gain in efficiency will
result. If the force acts away from the center of
curvature, the sign of I, will be negative and a
decrease in efficiency will result. These effects of
bound-vorticity induction might be classified as a
type of “interference” effect. A practical example
of this interference is in the location of end plates

Ficrre 36.—Geometry and veloeity relations for deter-
mining the induced lift of nonplanar systems.

on a wing (fig. 37). If the end plate is mounted
entirely above the wing (fig. 37(a)), a favorable
interference should result (L; positive). If
mounted below (fig. 37(b)), the interference
should be unfavorable (I, negative). When
mounted symmetrically (fig. 37(c)) there should
be no net value for L;.

In estimating efficiencies of highly curved
simple systems and of complex systems, the effects
of the induced lift should be considered. The
magnitude of the effect, of course, will depend
upon the geometry and lift intensity of the
particular system.

PRACTICAL APPLICATION CONSIDERATIONS

As has already been pointed out, successful
practical application of nonplanar wing forms for
improving aerodynamic efficiency depends entirely
upon the ability to construct such wings with a
sufficiently low structural weight and profile
drag. The nature of the structural-aerodynamic
interrelations can be seen from the following
considerations. If it is assumed that an

Li(+)

a) U

(a) End plates mounted entirely above wing.
(by Ind plates mounted entirely below wing.
(¢} End plates mounted symmetrically.

Fravre 37.—Interference (induced liff) effects occurring
with end plates.
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“optimum” flat wing of span b and area S has
already been chosen for a particular set of mission
requirements, it is desirable to examine various
nonplanar forms to see whether the basic wing
efficiency can be improved. For illustration
purposes, the nonplanar form is taken in the
following discussion as the semiellipse shown in
figure 38. If the wing area § of the given flat
wing is used as the basis for defining the force
coeflicients of the cambered wing, the induced-
drag polar of the nonplanar form is given by
equation (48)

Cpi=pet
Ka

where K is an absolute constant which depends
only upon the camber factor 8 of the arc (for the
optimum circulation loading) and ¢ is the span
comparison ratio which gives the length of the
projected span b’ of the curved wing in terms of
the span b of the flat wing, b’=d/y (eq. (46)).
The factor ¢ clearly indicates the actual physical
size of the curved wing in relation to that of the
flat wing. Thus, the induced-drag efficiency of
the curved wing, k=K/my?, is a function of its
physical span length &’ (fig. 38).

However, the structural weight and profile
drag of the curved wing are also functions of its
physical size. If the case where b’ =4 is considered
(i.e., ¢y=1.0), it is evident that the physical arc

- b .

(a)

(b) l
(a) Flat span elliptical planform.
(b) Elliptically cambered span.

Ficure 38.—Comparison of a flat elliptical-planform span
with an elliptically cambered span.

span length sr of the curved wing, where

5y L I N FET ]
— | gs= f @)
o= [t LA () oo
is always greater than that of the flat wing span b,
or
8T> bI:b

Y=1.0) (102)

This increase in physical length must be considered
in terms of the structural weight of the wing as
compared with the weight of the flat wing. In
addition, the greater arc length must be considered
in terms of the total surface area of the structure
exposed to skin friction and pressure drags.
Neither of these factors can be allowed to be signifi-
cantly greater than those of the flat wing since
any increase at all proportionately detracts from
the gains due to the higher effective aspect ratio.
If b is decreased (i.e., ¢ made greater than 1.0),
the physical size of the curved wing decreases;
thus both the structural weight and profile drag
are reduced. Simultaneously, however, the in-
duced drag of the wing increases, since the
effective aspect ratio of the wing decreases.
(See eq. (48).) Thus, by expressing the wing
structural weight and profile-drag coefficient as
functions of ¢, the optimum span of the curved
wing corresponding to minimum total drag for
a specified lift force can be determined. This
minimum drag can then be compared with that
of the flat wing at design lift and the relative
efficiencies of the two forms evaluated.

The successful working out of these problems
depends entirely upon the availability of efficient
structural techniques, and since the nature of
the design compromises necessary will depend en-
tirely upon the mission requirements of the par-
ticular aireraft under consideration, no general
statements can be made on the net gains in
efficiency possible with cambered-span airfoils.
There are, however, two immediate approaches
to the weight and profile-drag problems which may
be of fairly general applicability.

The first approach involves aeroelastic wing
construction in which the desired spanwise
camber z(y) of the wing is obtained by the
“designed” elastic deformation of the span under
the optimum airload of the cruise flight conditions.
That is, a considerable reduction in wing weight
might be attained by making the wing sufficiently
elastic that the span will assume the desired
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curvature under the loading condition of cruise
flight. Since the bending-moment distribution
along the span of a wing (together with the shear)
determines the necessary section moment-of-
inertia distribution I(y), it follows from the
bending-moment relation for large curvatures

dZ -

di?
(@) ]
that the wing moment-of-inertia distribution

I(y) (and hence the weight per unit of span) can
be made very small if the curvature under design

loading
d?z dz\]7372
dy? I: <dy>]

is sufficiently large. Thus, for certain camber
functions z(y), the weight of an elastic-span wing
possibly can be made equal to or less than that of
the equivalent flat-span wing (where the curvature
parameter is very small under flight air loads).
In addition, certain cambered wing forms offer
the possibility of simple bracing methods which
can result in very light structural weights.

M) =El—— (103)

(104)

The second approach involves the wuse of
laminar-flow airfoil sections to reduce the total
skin-friction drag. Certain laminar-flow profiles
(such as the NACA 64;-618 airfoil) have an
extensive low-drag lift-coefficient range and a very
high thickness ratio. Since the drag coefficient is
practically independent of lift coefficient for such
profiles, even up to very high Cy values ((;,=1.1),
use of these sections operating at a relatively high
section lift coefficient can reduce the local chord
length and thus produce the required lift with a
decrease in total profile drag and structural
weight. The chord size reduction is limited by
the maximumm wing lift coefficient desired. This
method appears highly suitable, however, for
those sections of highly curved spans which
produce primarily side force. The thickness of
these profiles is especially valuable in providing
sufficient depth for housing wing spars. In the
application of such profiles to cambered-span
wings, due consideration, of course, must be
given to the effect of span curvature on the
stability of the laminar boundarv-layer flow.

In general, nonplanar wings will be designed to
possess the optimum span loading for the cruise
flight condition, and at other angles of attack the
efficiency must decrease if the wing structure is
rigid or fixed, because of the changes which occur
in local angle of attack with nonplanar wings as the
whole wing is pitched. With variable geometry
or elastic spans, however, it may be possible to
maintain optimum loadings over a considerable
lift-coefficient range. The design of nonplanar
wings for optimum span loading at given cruise
conditions is relatively simple, since the effective
downwash at each point of the span can be directly
determined by use of the foregoing theory.

Aside from efficiency gains, there are other
possible advantages offered by nonplanar wings
for specific applications. For example, the verti-
cal arrangement of the lifting elements offers the
possibility of obtaining longitudinal stability and
control without the need for a tail plane. Such
systems also offer a wider latitude in lateral and
directional control than do flat wings. When
conventional tail-plane control is used, the spread-
ing of the vortex wake by use of nonplanar wings,
combined with the lower wake downwash velocities
of these systems, can offer possible solutions to
high-lift stability and control problems.

The foregoing procedures can also be used to
investigate a number of other important problems
in aireraft design. When large amounts of geo-
metrical dihedral, or anhedral, are required in
wings for proper lateral static and dynamic
stability characteristics, the wing span loading
necessary for minimum induced drag can be deter-
mined with dihedral effects included. The proper
span loading of special wing forms such as gull
and inverted-gull wings can be determined in a
simple manner. Finally, since the entire flow
field of the vortex wake is given by either the
conformal or analog method, the ‘“‘downwash”
field necessary for longitudinal stability analyses
on such wings can be calculated.

CONCLUDING REMARKS

The intention of this investigation has been to
outline the basic theoretical concepts and proce-
dures necessary for determining the induced lift
and the minimum induced drag for arbitrary
nonplanar lifting systems. The results have
shown that it is possible to describe the induced-
drag efficiency of such systems in terms of an
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effective aspect ratio, and that this aspect ratio
can be simply determined even for complex
systems by use of the electrical potential-flow
analog. The theory also provides the downwash
field information necessary for designing physical
wing syvstems which will possess minimum induced
drag for a given lift force.

Application of the theoretical results to the
prediction of the effective aspect ratio of a number
of simple and complex lifting systems of equal
spans has indicated that significant reductions in
induced drag can be obtained by use of nonplanar
lifting forms. It appears that cambered-span
wings can increase the effective aspect ratio as
much as 50 percent compared with the flat,
elliptical-planform wing having equal span and
producing equal lift, but the overall efficiency
increase depends also upon the structural weight
and profile drag of the cambered forms.

A brief analysis of the problems and require-
ments which must be satisfied for successful prac-
tical application of nonplanar wings has indicated
that in many cases structural considerations will
most probably govern the magnitude of the
efficiency improvement which can be actually
realized.

Various methods for overcoming the weight and
profile-drag problems which may be expected with
some of the forms investigated appear feasible in
the light of advances in aeroelasticity technology
and in low-drag wing profile developments.
Wings with a designed aeroelastic deformation
program can probably result in the realization of a
significant part of the theoretically possible gains
in aerodynamic efficiency.

LANGLEY REsearcH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LaNGLEY StaTtioN, HaMPTON, VA., February 21, 1962.
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