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TECHNICAL REPORT R-139 

THE THEORY OF INDUCED LIFT AND MINIMUM INDUCED DRAG 
OF NONPLANAR LIFTING SYSTEMS 

By CLARENCE D. CONE, Jr. 

SUMMARY / 6 3 %5? 
The basic theory of thP induced lift and drag 0.f 

nonplanar, circulation lifting systems i s  developed, 
and methods are e d c e d  for  determining the span 
force loading intensity necessary fo r  minimum in- 
duced drag. I t  i s  shorn  that the aerodynamic 
e$iciency of such optimally loaded systems can be 
expressed in terms of a n  egective aspect ratio which 
depends in  value upon the spatial distribution of the 
rorticity of the system. Methods for determining 
the maximum eflective aspect ratio of arbitrary 
lifting systems of given span by use of conformal 
transformation and electrical potential-$ow analog 
techniques are deitlopec? and illustrated. T h p  value 
o.f the induced-drag efficiency factor i s  determined 
for the families of circular, semiellipse, and com- 
plete-ellipse arcs and f o r  several more complex forms. 
The  results of the theory are interpreted in  terms of 
the physical airjbil requirt metLta ILecesmry jw SZLC- 

cessful realization of the theoretical induced-drag 
reductions. 

The practicnl application aspects of nonplanar 
wing systems are hrit$y considered. 

INTRODUCTION 

The requirements of many modern aircraft 
missions :ire such that high values of aerodynwinic 
efficiency must be obtained with aircraft having 
wings of relatively restricted span lengths. I n  
ninny of these missions the aircraft must operate 
a t  relatively large values of the lift coefficient, 
and the large induced drag associated with the 
small span consequently results in a rather low 
value for the operational aerodynamic efficiency. 
I n  endeavoring to increase the fiigiit eiiiciencj of 
such aircraft, i t  becomes necessary to investigate 
inore romples and unconventional wing forms 

which might offer the possibility of securing ap- 
preciable reductions in the induced drag, subject 
to the restriction of limited span length. Such 
forms are to be found among the various non- 
planar lifting systenis in which the lifting surfaces 
have an appreciable curvature or extension in a 
vertical plane perpendicular to the direction of 
flight. 

This paper has as its pririiary objective, there- 
fore, the development of t,he quantitative theoreti- 
cal procedures by which the mininiurn induced 
drag of arbitrary nonplanar lifting systems can 
be determined (subject to the physical restraint 
imposed by  limiting the allowable projected span 
of the system). With these procedures, the opti- 
mum spatial distribution of vorticity, corrcspond- 
ing to the minimum induced drag for a given lift, 
can be obtained for any system. Both conformal 
transformation and electrical analog techniques 
are developed for determining the optimum 
vorticity intensities of the system, and their use 
is illustrated by calculating the induced-drag 
efficiency factor for several comples, nonplanar 
wing systems. In  order that the theoretical treat- 
ment be reasonably self-contained and in order 
that the effects of spanwise curvature on the in- 
duced flow field may be made clear, the general 
theory of induced forces on nonplanar wings is 
developed in some detail for the case of a lifting 
arc, and the general lift and induced-drag integrals 
are derived for the case of wings possessing an 
arbitrary circulation distribution. 

The theoretical developments in this paper are 
based upon the assumption of inviscid, inconipres- 
sible flfiid flow so that the results are directly 
applicable to subsonic flight in air. The generai 
nature of the results, however, makes them 

1 
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equally applicable to the design of water-based 
lifting systeiiis such tis hydrofoil planes and other 
submerged lifting systems. Linear vortex theory, 
assuming small induced velocities compared with 
the free-stream velocity, is used throughout. 

This report is intended purely as a generalized 
development of the procedures by  which the mini- 
mum induced drag of rionplanar wing systems can 
be determined. It is not the intention here to 
make any detailed investigation of the relative 
induced-drag efficiencies of particular rionplanar 
wings. By way of illustration of the procedures, 
however, the induced-drag efficiency factor is de- 
termined for a few arbitrarily selected systems. 
The general methods derived herein can be applied 
as desired to the investigation and evaluation of 
specific lifting systems intended for particular 
aircraft applications. 

As an indication of the various factors affecting 
the physical design of actual nonplanar wing 
systems, a brief consideration of the practiciil 
itpplicatioii aspects of such wings is also presented. 

SYMBOLS 

aspect ratio 
curved-span aspect ratio, b'Y/S 
effective tispect ratio 
c ircle r t i d  ius in conformal transform a- 

:I const:tiit, f '  L d y  

wing span of flat wing 
projected wing span of nonplanrtr wing 
drag coefficient 
aircraft parasite-drag coeffkien t 
wing profile-drag coefficient 
wing lift coefficient 
COIlS t a11 t s 
drag force 
induced-drag force (boldfiicc synibol 

denotes vector) 
induced-drag force loading iriteiisity 

(boldface symbol denotes vec-tor) 
c :in1 ber depth 
inodulus of elasticity; also electric 

potential 
eccentricity of an eiiipse 
iierodynniiiic force loading iritensit- 

:ierodynariiic force intensity coniponenl 

tioris 

d - i  r" 

(boldface s~-mbol denotes vector) 

normal to V (see cg. (4)) 

aerodynitniic force intensity coiiiponerit 

gap distance in biplanes 
1 a constant, - a 

area moment of iiiertia 

parallel to V (see eq. ( 5 ) )  

a constant, BN, 
a constant (see eq. (97)) 
span efficiency factor 
lift force (boldface svnibol denotes 

lif t-force loading intensity (boldf ace 

induced lift force 
lift loading intensity in plane of syni- 

distance in the Joukowslri transforiiia- 

bending moment 
a constant (see eq. (42)) 
a noririal unit vector 
points in space 
a constant (eq. (58)) 
total velocity (boldface s-inbol denotes 

bound-vortex induced velocity vector 
vortex-sheet induced velocity vector 
distance in induced-velocitp equation 

(boldface s.yriibol denotes vector) 
wing area 
vector of surface area 
arc-length coordinates 
arc-length coordinntes of wing tip 
total arc span length 
unit tangent vector of arv 
free-stream velocitj- (boldfwe sj-mbol 

tangential velocitv of vortex flow 
complex potential function of R flow 
free-stream vertical flow velocitj- about 

wakes (boldfuce symbol dcnotcs vcc- 

vector) 

symbol denotes vector) 

me try 

tiori 

vector) 

denotes vector) 

tor) 
Cartesi:rn coordiniites 
coriiplex variable, y + ia 
camber factor 
circulation distribution function 
maximum value of circulation 
value ol circulation in plme of SJ 111- 

nietry 
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Y nondiriiensional Cartesian coordinate, 

A denotes an increment 
6 nondimensional Cartesian coordinate, 

2 zlb' 

2Ylb' 

e electric intensity vector 
c vorticity vector 
i+ complex variable, o f  it 
5 0  

E ,  11 

x nondimensional Cartesian coordinate, 
211lb' 

P mass density of fluid 
(r nondirnensional Cartesian coordina te, 

2tlb' 

complex coordinate of center of circle 
in conformal transformations 

Cartesian coordinates of {-plane 
angle of inclination of r (fig. 4) l e  

7 arc slope angle, tan-' (dzldy) 
cp velocity potential 
Ql: vorticity intensity vector of vortex 

sheet 
II. span ratio factor, blb' 

I 

1 - Q  angle between tangent and secant 
vector of arc (fig. 36) 

V the del operator 
Superscript : 
P denotes point a t  which velocity is 

specified ' Subscripts: 
' e  electrical analog quantity 

e$ effective value 
i induced quantity 
mar in axirnur n 
P, P' 

in space 
W wing propert- 
1, 2 ,  3, 4 
03 denotes condition a t  infinity 
0 

denotes conditions a t  a specific point 

denotes end point of path of integration 

denotes value of quantity in plane of 

FUNDAMENTAL THEORETICAL CONSIDERATIONS 
In this scction, theoretical relations are derived 

for calculating the lift arid induced-drag relntion- 
ship for nonplanar lifting systems which possess a 
known distribution of circulation. The general 
case of determining the lift and induced drag of 
systterm v i th  an arbitrary circulation disti ibuiion 
is considered first. Then the more specific case of 
determining the circulation distribution for inini- 
ilium induced drag is i n r  estigated by use of Nunk's 
induced-drag t heoreins. 

s p i i  rietry 

Before entering into the theoretical development, 
however, a discussion of the basic problem of 
increasing the overall efficiency of actual wing 
systems is presented so that the physical sig- 
nificance of the subsequent theoretical predictions 
of induced drag can be properly interpreted. 

THE EFFICIENCY LIMITS OF PHYSICAL WING SYSTEMS 

The requirements for obtaining high aerody- 
namic efficiency with a conventional flat-span 
wing can be seen from the expression for the wing 
drag polar 

where C,,, the profile-drag coefficient, is a function 
of CL. Obviously, i t  is desirable for C,, to be as 
small as possible and the effective aspect ratio 
kA to be as large as possible. These two require- 
ments are incompatible, however. The thicliness 
ratio of a wing increases as tlie aspect ratio is 
increased, and since the value of CD, increases with 
thickness ratio, a point is ultiniately reached where 
increases in geometric aspect ratio (or span length) 
are actually detritnental since the increase in pro- 
file drag becomes larger than the induced-drag 
reduction. In addition, for a constant wing area 
the structural weight of the wing must increase as 
the aspect ratio increases and this requirement 
necessitates operation a t  a higher value of CL for 
a given flight dynamic pressure and payload 
weight, with a consequent increase in induced 
drag. When all these struc tural-aerodj-nainic 
interactions are taken into account in the design 
of tin aircraft in tended to fulfill a specific set of 
mission requirements, the analysis results in the 
determination of an optirnurii wing form with 
specified span b,  wing area S, and aspect ratio d. 
The overall aircraft range and endurance pi~rz~ln- 
eters then become 

If tlie value of CDp is coilsidercd to be inde- 
pendent of the lifting system for a given aircraft, 
improveiiients in aerodynnniic efficieiicv can conie 
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only from use of more efficient wings. With the 
assumption then that an optimum flat wing has 
been selected for a given aircraft mission, the 
question arises as to whether other wing forms 
exist which would possess less drag for the same 
operating conditions of cruise flight. I n  order to 
have a higher efficiency a t  cruise than the optimum 
flat wing, a lifting system must offer a significant 
decrease in a t  least one of the factors CD, or 

without simultaneously increasing the other CL2 a 
to such an extent that the beneficial effect is 

CL2 
7rkA cancelled. The coefficient - implicitly involves 

not only the effective aspect ratio k A  of the sys- 
tem, but also the wing structural weight which in 
turn helps to determine the value of CL for cruise. 
Increased structural weights, of course, mean 
larger values of CL for cruise, with an attendant 
induced-drag increase. 

The following theoretical considerations show 
that there exist an infinite number of lifting 
systems which possess less induced drag for a 
given lift than the optimum flat wing (elliptical 
planform) of equal span. In  fact, many non- 
planar wing forms exist which are more efficient, 
from the induced-drag standpoint, than optimum 
flat wings with greater spans. However, such 
nonplanar wing forms must also be considered in 
terms of their structural weights and profile-drag 
coefficients in any practical, overall efficiency 
coniparison with a flat-span wing. Clearly, the 
possibility of realizing net efficiency gains with 
nonplanar wings depends critically upon the ability 
to construct such forms with sufficiently low 
striictural weights and physical surface areas, as 
compared with flat wings. Since the nature of 
the necessary design compromises of wing area 
and structural weight is determined by the specific 
mission requirements for a particular aircraft, no 
general statement can be made a priori about the 
net efficiency gains which can be anticipated with 
nonplanar systems. The value of noriplnnar wing 
forms for particular applications depends upon 
the nature of the specific mission involved arid each 
application must therefore be considered as a 
separate case. 

The subsyicent the~rctica! precliciiuris are 
indicative only of the induced-drag efficiencies of 
nonplanar systems and must, therefore, be in- 
terpreted in light of the preceding discussion 

when such forms are considered for specific appli- 
cations. The induced-drag efficiency factors of 
the sequel, however, are developed in a form which 
is particularly suitable for such overall design 
analysis. 

THE INDUCED VELOCITY 

Consider first an arbitrary length of a bound- 
vortex arc (representing a cambered-span airfoil) 
having a prescribed circulation distribution r(s) 
and situated in a plane perpendicular to a steady 
free-stream flow of velocity V. Since the vortex 
filaments composing the arc cannot terminate in 
the flow, there must emanate from the arc a vortex 
sheet whose intensity in the immediate vicinity 
of the arc is given by dr lds  taken along the arc 
(fig. 1). According to the law of induced velocity, 
the entire flow field is specified by 

wl ie ress ’  denotes area integration over the semi- 
/. I 

infinite vortex sheet, J denotes line integration 

along the bound arc, and t is the unit tangent 
vector along the arc. By the Kutta-Joukowski 
theorem, the bound-vortex arc will be subjected 
at each point of its length to an aerodynamic force 
whose loading intensity F’ is 

F’(s)=pq(s)Xr(.s)t ( 2) 

where q(s) is the total velocity a t  points along the 
arc. 

Since, in general, the velocitj- field q is not uni- 
form, the wake will react upon itself to produce a 
continuous distortion of the vortex sheet, and this 
distortion will be reflected in an alteration of F’(s) 
t is is evident from equations (1) and ( 2 ) .  The 
nature of such interactions is discussed in reference 

FIGURE 1.-The vortex and force system of a lifting arc. 
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1 for the particular case of an elliptically lotided 
straight vortex line. 

Linearizing assumptions.-If, however, tlic rate 
of variation of the circulation along the bound arc 
d r / &  is relatively small and the value of V rela- 
tively large, then the value of q,(s), the wake 
induced velocity a t  the arc, as given by 

( 3 )  

will be small cornpared with V. The rate of‘ defor- 
mation and inclination of the wake will then be 
sufficiently small that such deformation effects 
can be neglected and the vortex sheet assumed to 
extend unaltered to infinity, parallel to V in the 
downstream direction. Also, if the arc is rela- 
tively flat, the self-induction effects of the bound 
arc vorticit? will be negligible; that is, q,<V. 
When such conditions :ire fulfilled, the vortex 
velocity-force system c:~n be “1inetLrized” and the 
aerodynamic force intensity components Fk and 
FL (normal and parallel, respectively, to the free- 
stream velocity V) then become 

Fh=pVXrt (4) 

F;= p g z x  r t ( 5 )  

For the particulur case of a flat lifting-line seg- 
ment, equations (4) and ( 5 )  reduce to the familiar 
rorlns 

L ’ = p v x  r t  (6) 

D; =pq,x r t  ( 7 )  

for the lift and induced-drag loading intenqities. 
Under linearizing assumptions, tlie aerodynamic 

force component acting on the bound arc in the 
direction normal to the free-stream velocity V 
is given by 

L= [ ( p V x r t ) . n ] n d s  (8) S’ 
where n is a unit vector which specifies the direc- 
tion chosen to define the lift force L. The compo- 
nent acting parallel to V is given by 

D,= [pqzx  rtl  ds (9) SS 
where D, is by definition the induced drag. 

Physical wing systems.-In most practical ap- 
plications of lifting systems, the maximum attain- 

659943-63-2 

able value of r is sufficiently small that use of the 
linear relations is quite valid. Linear theory, 
assuming small induced velocities compared with 
V and negligible wake deformations, will therefore 
be used in the remainder of this paper. 

In the theoretical treatment of lifting systems, 
the physical wings are replaced by a system of 
bound vortices which is assumed to be rigidly fixed 
in a steady flow and hence capable of sustaiiiirig an 
aerodynamic load. For cases where the sparis of 
the various lifting surfaces comprising the physical 
system are large relative to the maximum opera- 
tional value of the circulation I?,,,%, the physical 
wings may be replaced by individual vortex lines 
possessing equivalent circulation distributions. 
For more detailed analyses, or when the circulation 
is large compared with the span (highly loaded 
spans), the chordwise or streamwise distribution 
of the bound vorticity must also be considered, as 
well as the wake deformation effects, arid the 
system must be represented by bound-vortex 
surfaces. I n  the sequel, the systems to be 
discussed are limited to bound-vortex lines and 
arcs, and the results, therefore, apply directly to 
physical systems with moderate to large spans or 
with relatively small maximum lift coefficients. 
Discussion is restricted to systems possessing a 
plane of symmetry, and this plane is assumed to 
lie parallel to V. The aerodynamic lift is then 
defined as the force component in this plane, 
acting normal to V. 

THE LIFT AND DRAG FORCES 

The induced lift of nonplanar systems.-For tlie 
generid nonplanar lifting system, there exist com- 
ponents of induced velocity q, parallel to V due 
to the bound vorticity of the system itself. The 
source of these components is indiciited in figure 2 

= I  

FIGURE 2.-The induced-lift velocity dlagrnin. 
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for the case of an arbitrtiry arc shiipe. Under 
the  iissuniptions of sniall induced velocities, q, 
1llii!- usudly be neglected in comparison with V. 
l‘tie intluced lift is considered in more detail in a 

in producing induced tlrilg because of the curviiture 
of the span. With the notation shown in figure 4 
this “effective tlownw-nsh” becoiiies, i i i  scalar fortii, 

1 1  d r  subsequent section. (d$) -- COS (.-e), - d.9 (11) The induced drag of nonplanar systems.-The e1f-47r ? t l s  

induced drug of iioiip1:in:ir sj-steins can be d c u -  
l : i td ,  in tlieorj-, by tlie wine met1;ods used f‘or 
pliimir systenis, only the rnat1ieiniitic:il manipu- 
lations ~ n a j -  become extreiiiel?- complex because of 
tlic cwrretl pat tis dong wliich the integrations 
iiiust be carried out. ‘I’lie expression for the 
induced drag of a synr~ietrical, iwbitrary arc 
specified by ~ ( y )  (fig. 3)  id possessing a11 :irbi- 
tr;ir?- circuliitioii distribution specified by r(S) 
is now derivetl to  illustrate the hisic effects 
iiit tmlucetl by the span curvature i i n t l  to providc 
t he fundamentd iritegriils needed for. deterniiiiing 
the induced drag of arbitrarily loaded systeiiis. 

( ’oiisitler first the tlifl’erential of velocity dqLP 
(fig. 4) induced at the point P ( y , z )  of tlie arc by 

wherc tlie subscript P denotes conditions :It the 
fixed point P. To obtain tlie total effective 
downwash at P due to the entire w:ilre vorticity, 
eyuiitiori (11) is integrated aloitg the arc iis 

folloms: 

tl r. 
tls Here T ,  8,  arid - vary with the arc. coordiniite s, 

wliilc 7 is constant f‘or i~ given point P. The t o t d  
induced drag is then ot)t:iined by t tic relation 

d r  the vortex f i h i e n t  of strength - ds ema1i:iting 

frolll poilit pr(t,?). rrlIe Ili:lgnitutle and tlirec- 
tion of this velovit v is 

\\*liere the prilll<> (lenotes the viiri;lt)le of the irlrler 
integriil and the subscript t denotes the endpoint 
value for the :irc-length coordinate s. 

I n  general, it is inore convenient to integrate in 
terms of the (’artesian vari:ibles ?J i d  (fig. 4). 
Equation (1 3) ( ~ i  therefore be t riiiisformetl tq-  
use of the re1 :L t ’  lolls 

d Y  

Only i i  component of this velocity will be effective 

(14) 

(15) 

to yield 

F I G ~ R E  3.--A lifting arc of arbitrary curvaturr. 

I V /  

and b’j2 is the length of tlie projected span iilong 
tho ?/ (and .$) iixis. T h e  I‘unction cos (.-e), (’tin 
be expressed in ternis of ? I ,  r ,  E ,  a r i d  1 t)y substitut- 
ing for the rarious ternis on tlic right in the 
following identity: 

FIGI-RE l.--Tho force ant1 vc,locity r eh t  ioii.: for ail :Lrbi- 
trary l i f t  iiig :irc. cos ( T - ~ ) , = C O S  T cos O+siir  T sin e (18) 
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Froin the geometric reliltions of figure 4, the 
following reliitio~is :ire evident: 

~~ 

1 cos 7- [1+($f]l’* 

Substitution of t l i c w  txhtions into equation (18) 
:inti dropping of t l i c  suhsc-ript P, 3-ields 

(23) 

Substituting this expression into equation (1 6) 
and rearrxngeiiierit gives tlic final relation for the 
induced drag in tcrtiis of the (‘artesian coortlinntes, 

Wi h this relation t l i c  iiiduc-et1 tirag of tiny iiirfoil 
whose spanwise c+urv:iture z(y) is known can be 
cdculuted when the circulation loading r(y)  is 
specified. Equiltioris (8) ttnd (24), therefore, 
determine the iiiducecl-tlnig polar for any non- 
planar wing of specified geometry. 

When the fact is considered that I‘, drlcl f ,  2 ,  and 
7 niaj- theiiiselves be involved functions, the diffi- 
culty of obtaining an analytical solution for equa- 
tion (24) is obvious and, i n  gener.21, ~iiacliine coiii- 
putation must be used. In addition, the so-called 
“principal value” of the inner integral must be 
taken and this operation requires the use of special 
techniques. Equation (24) applies directly only to 
the case of a single lifting arc. For the case of two 
suFerposed arcs, such ils shown in figure 5, calcu- 

FIGCRE 5.p.4 lifting 

lutioii of the total induced drag of the systeiil re- 
quires the solution of four double integrals of the 
type in equation (24), two of which ma)- be con- 
siderably inore cotiiples in form. In  general, 
solution of a systetn of N superposed arcs requires 
the cvaluation of NL double integrals of the type 
shoun. 

In inany cases of practical concern, however, 
one is not interested in solving equation (24) or a 
systern of such equations by using an arbitrary 
circulation distribution r ( y ) ,  but rather by using 
the particular distribution which will produce the 
minimum induced drag for the given arc geometry 
z(y). This is particularly true in the present case, 
where maximum wing efficiencies are of interest. 
The problem of deteririining this optimum circula- 
tion loading for an arbitrar>* system of lifting lines 
was originally solved by l l u n k  (ref. 2) by use of the 
calculus of variations. The results of Munk lead 
to the specification of the optimum circulation 
distribution and also to a simple method for de- 
termining the induced drag of the system, provided 
the velocitj- potential for the flow about the \Torte\; 
wake can be detertiiined. This method eliminates 
the need for direct integration of equation (24). 
The total results of Munk’s investigation are not 
considered here, but two of the more basic 
theorems evolved are listed for use in the sequel. 

Theorem 1: The total induced drag of any 
three-dimensional systeni of lifting elements is in- 
dependent of the positions of the various elements 
in the direction of the free-streani velocity V 
(Xlunk’s stagger theorein). Thus, if all the lifting 
elements of a systeiii are translated, parallel to V, 
into tt single plane nortiial to V while the initial 
circulation is maintained constant, the induced 
drag of the resulting two-dimensional system will 
be rxactl5- the s a m ~  as tha t  of the three- 
dimensional. longitudinnll>- dispersed system. 
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Theorem 2 :  When all the elements of a lifting 
system have thus been translated to a single plane, 
the induced drag will be a niinirnurri when the 
component of induced velocity normal to the lifting 
element a t  each point is proportional to the cosine 
of the angle of inclination of the lifting element a t  
that  point. In  terms of the velocities previously 
defined, the condition for riiiriiiiiuin induced drag 
thus becomes 

where w,/2 is the constant of proportionality. 
This relation indicates that the intensity of the 
wake vorticity drlds a t  each point P must be such 
that the velocity component nornial to tlie vortex 
sheet is 

(qs)e,,=W, cos 7 tX- ( F) 
The condition is illustrated in figure 6 for an arbi- 
trary arc shape. 

Since the required vortex intensity drltls cor- 
responds to a specific circulation distribution 
r(s) along the lifting arcs, the potential flow 
generated b.v tlie wake will give the desired opti- 
nium distribution r(s). The potential r n t i y  be 
determined by conformal transformations of basic 
flows for many simple lifting systems. To obtain 
the optimum circulation distribution, a conformal 
transformat ion which will transform a known basic 
flow into the flow about the desired wake form 
is found, using the “free-stream” two-dimensional 
vertical flow of magnitude -w,. The resulting 
transformed flow will then satisfy the require- 
ment of equation (26) and will correspond to the 
potential flow around a solid boundary having the 
same shape as  the wake froin the lifting system. 

The velocity potential cp of the transformed flow 
can be found a t  once from that of the ba,sic flow. 
In particular, since by definition 

the desired distribution of r along all lifting lines 
is determined. Furtlicr development and applica- 
tion of these results is carried out in the following 
sections. 

THE PRINCIPLE OF VORTICITY ATTENUATION 

WAKE ENERGY AND CIRCULATION RELATIONS 

Consider a flat lifting line operating with any 
arbitrary s-iiinietrical distribution of circulation 
r (y). Let the iiiusitiiuni value of this function be 
rmaz (not necessarilv the value for r(0)). The 
law of vortex continuit\- requires that  all the 
vortex filaments comprising the line continue 
downstreain unaltered in strength. Thus, the 
circulation in any circuit surrounding the vortex 
wake leaving a sernispan (fig. 7) must be equal 
to the circulation existing a t  the center of the span 
ro= r (0) by Stokes’ tlieoreni, 

and tlie total circulation of the wake vorticitj- 
cannot be altered. The 1iinetic-energ~- content 
of the wake, liowei-er, corresponding to the 
induced drag on the wing, ma?- Tar\- considerably 
even for a constant value of ro, depending upon 
the forin of the function r(y). Thus, even 
though two wings niay have equal values of lift 
and ro, their induced-drag values may be quite 
different. The circulation value and the lift 
do not in general uniquely determine the induced 
drtig; r(?j) is also very iniportan~. 

FIGITRE A.-Tho eff(,cti\-c-do~~.nn-:l.1ti rrlntion for riiitiiniiim 
induced drag. F ~ G U R E  7.-The rc1:ition of walir a n d  I)ouiid vorticity. 
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A simple illustration of this fact is the Rankine 
vortex flow. If the core diameter of such a 
vortex is specified along with the intensity of the 
vorticity, the circulation r and kinetic energy of 
the total flow are determined. If a second 
vortex of larger core diameter but of equal circu- 
lation is considered (fig. 8), i t  is evident that the 
kinetic energy of the second flow will be less even 
though i t  possesses the same circulation as the 
first. Thus, if these two vortices are considered 
as the wakes from two different wings (ref. I ) ,  it  is 
apparent that theinduced drag of two liftingsystems 
can be varied considerably by changes in the spatial 
distribution of the trailingvorticity. These facts are 
pointed out here merely to emphasize that despite the 
need to preserve the total wing circulation, no 
unique restriction is placed upon the induced 
drag which accompanies this circulation. 

Effects of spreading vortex wakes.-The effec- 
t i re  downwash producing induced drag on an 
element of a lifting line a t  point P due to a vortex 
line of strength d r  a t  point P’ (fig. 4) is 

h I 

where n is a unit vector norriial to the lifting 
element a t  P; n=tX-. In  order to iriininiize 

(dqzP)ef f  and hence the induced-drag differential, 
three conditions are desirable: (1) the value 
of d r / d s  should be small, (2) the length T should 
be large, and (3) the vectors and n should be as 

nearly parallel as possible. These conditions 
can be satisfied by spreading the lifting elements 
over as large an area as possible. 

V 
V 

r 

rl rz r 

FIGURE 8.-The velocity distribution for two vortices of 
different radius. 

An example of the practical application of this 
principle is the biplane wing. If, for illustration, 
an elliptically loaded vortex line possessing a 
maximum circulation ro (fig. 9) is split into two 
separate elliptically loaded lines with equal maxi- 
mum circulations of - ro and separated vertically 

by a distance g, then for any pair of interacting 
vortex elements uul and u2 it  is seen that the above 
three requirements are fulfilled. The intensity of 
each trailing vortex filament has been reduced, the 

r distance r has been increased, and the vectors - r 
and n are more nearly parallel. As the distance 
g is increased, or as the number of separate lifting 
lines is increased (multiplanes), the efficiency of 
the system of course increases. A second practical 
example is the wing with an end plate (fig. 10). 
The same principle of diffusing or spreading the 
vortex lines of the wake is used to reduce the 
induced drag of the wing. The vortex filaments 
of the main lifting line branch at  the end plate as 

dr shown, so that for a given value of ro, - along the 
ds 

main span is less than for the plane wing. 
Wake momentum-kinetic-energy relation.- 

The principle just asserted is in reality merely a 

1 
2 

0 I 

FIGURE 9.-Attenuation of vorticity by a biplane wing. 

I 

FIGURE 10.-Attenuation of vorticity by use of end plates. 
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direct consequence of the momentum-liinetic- 
energy relation for airfoil wakes (ref. 2 ,  appendix 
B). I n  order to produce a given lift force an 
airfoil must impart a definite vertical momentum 
increase to the airstream, and the kinetic energ?- 
of the wake motion must come from the thrust 
work done by  the wing in overcoming the induced 
drag. For a given momentum change, tlie wake 
kinetic energy will decrease if tlie wake vertical 
velocity is decreased while the mass of air affected 
is increased. I n  vorticity spreading, such as 
caused by increasing tlie span of a wing with 
constant lift, the local induced wake velocities are 
reduced since the intensity of tlie vorticity nt an?- 
point is lowered (fig. 8), arid IL larger mass of air 
is affected. Thus, the total kinetic-energy content 
of a unit length of the wake is decreased h y ~  vor- 
ticity spreading while tlie lift is unaffected. 

In  the development of various lifting-system 
configurations which will possess increased aero- 
dynamic efficiency, therefore, only those which 
satisfy the principle of vorticity spreading or 
attenuation rni~y be expected to have decreased 
induced drag. A generalized treatment of the 
relation between airfoil dray ttnd wake energy is 
given in reference 3 .  

THE EFFECTIVE ASPECT RATIO OF NONPLANAR 
LIFTING SYSTEMS 

THE LIMITING CASE OF THE ELLIPTICALLY LOADED LINE 

By application of theoreni 2 of the preceding 
discussion i t  can be proved that the optiinum 
circulation distribution for a flat lifting line is 
elliptical in form: 

(28) 

Sirice both T and 6 are zero for n flat line, eqruitiori 
( 2 5 )  reduces to the requirement tliat 

so tliat the downw:isli must be coristarit  cross the 
span. When the potential of the flow about :L flat 
plate wake is determined, the elliptical distribu- 
tion of eqiiatiori (28) results. Since the down- 
wash is constant across the span, it follows that 
the desired r distribution is obtained by lisp of' the 

ellipticd-planform wing arid that the elliptical 
lif t-loading-intensity distribution 

will give the minimum induced drag for flat or 
planar monoplane wings. 

It is shown in three-dimerisiorial airfoil tlieory 
(ref. 4) that  the lift and induced drag of nii 

elliptically loaded flat wing are 

7i- L=- pVrob 4 (31) 

where b is the span length. S,irice tlie wing aspect 
ratio is defined by 

b2 A=- 
S (33) 

where S is the wing area, the corresponding lift 
and drag coefficients become 

(34) 

(35) 

The resulting induced-drag polar is therefore given 
by 

This expression is actually a special case of a iiiore 
general relation which will be derived subse- 
quently, and serves as a convenient basis for 
comparing the efficiencies of various lifting 
sys tems. 

OPTIMALLY LOADED NONPLANAR SYSTEMS 

The drag polar.-In order to determine the 
induced-drag polar corresponding to tlie optiiiiurii 
circulation loading for a nonplanar wing, such as 
represented by  the generalized arc of figure 11, 
use is made of the basic relation of theorem 2 

F' 2v 
n, wo cos 7 (37) - 
7-- 
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FIGURE 1l.-The relation between the aerodynamic force 
and the lift. 

where F' is the aerodynamic force loading inten- 
sity. Since F' cos T=L', this relation may be 
rewritten as 

Di' wo 
r,' -2v 
-~ 

where w0j2V is a constant. Therefore the ratio 
Di/L' is constant a t  each point of the arc, and thus 
the total induced drag can be written as 

Equation (39) can be expanded to give 

(39) 

where tlie factor 2 corrects for the velocity wo 
which applies to the doubly infinite vortex wake 
of a two-dimensional flow, as will be clear from 
the illustrations of the next sections. This drag 
relation can he nonrlimensionalized by using tlie 

relation y=-~  to yield Y 
b'l2 

Let 

and 

then 

The induced-drag polar can therefore be written as 

b I2 where K=BN, and A'=-. The factor A' may s 
be called the geometric aspect ratio of the curved 
span. 
The effective aspect ratio.-Comparison of 

equation (45) with equation (36) suggests the con- 
cept of the effective aspect ratio Aefffor evaluating 
the efficiency of nonplanar lifting systems. If the 
same wing iuea S and span b of an elliptical plan- 
form flat wing of aspect ratio A are also used as 
the basis for calculating the coefficients of a non- 
planar system of span b' (:is indicated in fig. 12), 
the following relations can be defined 

b = fib' (46) 

Equation (45) then becomes 

(47) 

Thus, the induced-drag polar for any nonplanar 
system can be expressed as 

(49) 

where A is the aspect ratio of' the given flat, ellip- 
tically loitded wing being used for comparison, and 

FIGURE l2.--The span of a nonplanar wing. 



~~ ~~ ~ ~ ~ ~~ ~~ ~ 

12 T E C H N I C A L  R E P O R T  R- 13  9-NATIONAL AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  

k is an efficiency factor which is constant as long 
as the optimum circulation distribution exists on 
the nonplanar lifting system, where 

Since the coefficients CL and CDt for the flat and 
nonplanar wings are based on the same area, the 
two systems being compared will experience equal 
lifts a t  equal values of C, and dynamic pressure. 
But for cases where k > l ,  the nonplanar system 
will be more efficient than the optimum flat wing; 
that is, the nonplanar systeni will have less induced 
drag than the flat elliptical wing for equal total lift 
forces. If k < l ,  the nonplantir system will be less 
efficient. These facts may be simply expressed in 
ternis of the effective aspect ratio Aeff ,  where 

A,,=kA (51) 
so that 

I t  is obvious froin the preceding development 
that any nonplanar lifting system of span b’ can 
be compared with any flat-span elliptical wing of 
span b and area S. However, the usual problem 
which is of primary interest is that, given a par- 
ticular flat-span elliptical wing (the most efficient 
flat wing), how do various modifications affect the 
efficiency of the wing, and in particular, what mod- 
ifications will result in an increase in efficiency. 
Since certain modifications nias result in a span 
change, such as curving ti flat wing into an arc 
while lieeping the total arc length equal to the 
length of the original flat span, the factor # is nec- 
essary to account for span-change effects. When 
comparing systems in which the spans are held 
equal, # = l . O .  The particular convenience of the 
definition of k, as given by equation (50), for com- 
parison purposes will be evident in the subsequent 
theoretical development. 

I n  these derivations, no mention has been made 
of the physical nature of the nonplanar lifting 
sj-stem. Indeed, the induced drag of the system 
is dependent on!y on the spatial intensity distrib~- 
tion of the lift (or aerodynamic force) and is quite 
independent of the physical means used to produce 
this distribution. Transformation of a given spa- 

tin1 distribution of circulation into a physical lift- 
ing system can be accomplished in, theoretically, 
an infinite number of ways, but, in the usual case 
practical considerations and coriiprornises deter- 
mine the manner in which this must be done. The 
preceding theory, however, provides all the basic 
information needed for design purposes. Prac- 
tical application aspects are considered in the last 
section of this paper. The problem of determining 
the circulation distribution necessary for obtaining 
the rnaximuni effective aspect ratio of an arbitrary 
system is now considered. 

DETERMINATION OF THE SPAN LOADING DIS- 
TRIBUTION FOR MINIMUM INDUCED DRAG 

The conditions of theorem 2 for minimum 
induced drag require that the vorticity distribu- 
tion in the wake be such that q,.  n=wo cos T a t  
every point of the wake. Thus, far downstream 
of the lifting system the wake w-ill move normal 
to itself locally with a velocity w o  cos T .  

It is assumed here, of course, that the wake 
inclination and deformation effects are negligible. 
Then the effective induced flow a t  the lifting 
system will be (20, cos ~ ) / 2 ,  since the vortex wake 
is only semi-infinite with respect to the plane 
containing the system (all longitudinally distrib- 
uted lifting elements having been translated into 
a single plane, by theorem 1). 

If n plane is taken far downstrenin normal to 
the wake, the flow will consist of the two-dimen- 
sional iiiotion due to the wake vortex lines. The 
section of the wake made by this plane will be 
exactly the same as that of the lifting system 
(fig. 13). If a vertical flow -w, is now super- 
posed on thiq two-dimensional wtike flow, the 

t 
-wo I 

FIGURE 13.-The flow regime for calculation of the poten- 
tial distributiou aloiig a lifliiig arc. 
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wake will be brought to rest so that the flow will 
be steady, and the resulting velocity field will 
correspond to the potentiill flow about a solid 
boundwy having the sa111e section shape as does 
the wake. Thus tlie jump in potential cp a t  any 
point of the wake (fig. 13) ,  or a t  any point of the 
urialogous solid boundary, specifies t tic circula- 
tion a t  the corresponding point in the bound- 
vortex system since 

r P =  ( P z - c p J P ’  (53)  

The vertical flow in the plane of the lifting system 
will be - w0/2, or half that  existing far tlownstrcaiii. 
Deterinination of the potential of the two-dinicn- 
sional wake flow therefore estnblishes the viilue 
of k corresponding to ~nini inu~n induced drug, 
according to cquittion (50). 

Determin2ition of the velocity potential cp for 
:irbitrnr\r flows is in generid difficult, but cilti be 
carried out for many simple lifting line systcnis 
by conforriinl niapping. To establish the potcn- 
tial, ii transformation must be found which will 
c’arry t i  basic, known flow with “free-stretiin” 
velocity -wo into the desired flow in tlie trims- 
formed plane while preserving t l i e  flow -w,  at 
infinity. Then u t  corresponclirig points in tlie 
two flows the Sitme velocity potential  id streiini 
function values apply so that r becollies known 
€or the lifting system (trwnsfornied pliinc) by 
means of equation (53). Use of‘ confortrial iiiap- 
pirig for tlctertnining the optiriiutii r 1o;idings and 
corresponding 12 values for lifting arcs and closed 
lifting lines is illustrated in the nest swtion. 

In general, the trunsfoririation function neces- 
sary to obtain the flow about arbitrary forins 
citnriot be found easily. This situation is es- 
pecially true for coinples systeiiis such iis super- 
posed lifting arcs arid lines. There exists, however, 
a quite satisfactory solution to this problem. By 
use of the electrical potential-flow analog, the 
potential distribution for even complex systeiiis 
can be determined easily. With this device, 
advantage is taken of the fact that  the flow of 
electrical current in a uniforinly condwting 
medium is directly analogous to incompressible 
fluid flow since both satisfy Laplace’s equation 
V’cp=0. When identical boundary conditions 
are iiiiposed 011 iiie two flows, nieasiireinerits of 
the electrical potential along the boundtiry can be 
converted directly to the velocitv potcritiiil distri- 
butioii dong the boundary (lifting syste~ri) in the 

ti*7994:3-f;:;-:3 

analogous fluid flow. The principle ol‘ this method 
iind its application to the solution of ii  number of 
coniplcs systems is illustriited in the nest section. 

SOLUTIONS FOR THE EFFECTIVE ASPECT RATIO 
OF OPTIMALLY LOADED ARCS 

The first class of nonplnnar lifting systenis that  
will be investigated by nieans of the foregoing 
theory consists of syninietricd iirc segments. 
Such forms are of particular interest because of 
the simplicity of construction of the airfoils which 
may be derived from thetri itnd because the 
iiiecliiinical design of such wings follows closely 
the usual procedures for flat wings. I n  addition, 
the effects of such factors as dihedral angle arid 
iteroelastic def‘ortiiiition of the span on coriven- 
tioriwl flat airfoil efficiency can be estimated with 
sirriple arc I’ortns. As special cases of arc forms, 
the efficiency factor for lifting lines wliich form 
closed ellipses will be investigated for the family 
O j e s l  where e is the ecw,tr*icity. The circle 
will be iricluded HS lower limit ( e = 0 )  and the 
straight line ns the upper limit (e=1) of the ellipse 
forms. 

SOLUTIONS BY CONFORMAL TRANSFORMATION 

In  order to illustrate the application of‘ 
conformal iiiitppirig tectiiiiques to the solution of 
equation (50), the k viilues of tlie ltitriily of cir- 
cular arcs and the fainily of closed ellipses will 
be determined. 

Circular-arc segments.-For present purposes, 
the fiunily of lifting lines represented by circular- 
arc seginents can be expressed in terms of a camber 
factor p, whwe as shown in figure 14 

(54) 

Y 

FIGURE l-t.-lX~tancc~s i i ~ d  t o  d(4inci the c;mibcr factor 
of a circular-arc segitit>iit. 
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The ratio of depth tl to projectetl seniispan length 
b ' /2 ,  therefore, defines eiicli specific ilrc ol' ttic 
faniily as ttie arcs proceed irotii a straight line 
(p=O) to ii setiiicircle @ = I )  for the riinge 

o j p 5 1  (55)  

In order to deteriiiine ttie potential distribution 
dorig iiny iiietiiber of this family of arcs, the two- 
tliniensioniil flow iibotlt ii circle in t lie [-pliine 
(fig. 1 5 )  is trmsfortiied into the flow ~iromid the 
desired arc in the 2'-plane by tiietins ol' ttic Jou- 
kowski t r:iiisforiiia t ion 

Here ((=.$+is) i ~ 1 1 d  2' ( = ? J + ~ z )  arc coiiiples 
variables. The Joukowski t ransfortiiiitiori will 
trnrisforiii tlie circle of riidius n whose ceritw is 
loctit etl on tlie positive 11-iisis rind which passes 
through the point 1 011 tlie .$-axis (i.c., the point 
(=/) into t i  circular-arc segnient in tlie z'-plme, 
:is shown in figure 15. In  pnrticular, the point 

b' {=1 will trcinsfortii into the point z'=21=-- 
2 

Thus the cibliiber ftwtor can be written as 

(37) 

since the distance d is twice the q coordin>ite of 
the circle center in tlie (-pltirie. The radius (I 
becomes I I  function ol' B by the following 
defirii tions: 

a=pl (58) 

_ _ _  
The. circle crnttlr is lociited nt [=[,=i(,o?-/?) 
= i p l .  

The coiiiples potential of the flow about tlir 
circle in tlic [-plane due to i i  uniforiii flo\v -to,, 
frotii infinity tis shown in figure 15 is 

(TIie flow iiritl arc in the z'-pliine are inverted here, 
but this inversioti litis no effect on the cleteriiiin>i- 
tioii of I'.) The velocity potential cp is, therefore, 

(63) 

where R denotes the real part of UT((). This 
eqnzition ciin be riondiiiiensioriulizetl by dividing 
all terms by b'/2.  With the definitions 

A=-- 7 
b'l2 

4 
b '12 

[T=- (65) 

ntid after renrrmgeiiieiit, equcition (6S) Imxmies 

~ 

p= 1p'- 1 (59) 

The equtition of the circle is, in iiondinierisional 
forr11, 

(-plane z'-plane 

FIGURE 15.--The Joukowski trarihformation relations for 
circular-arc segments. 

P 
2 =  - 2  for -? < 02 ~. Under the transforiiiution of equu- 

tiori (56) the corresponding points iri the z'-plme 
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are given b,v tlie nondiniensional coordinates 

((is) 

Thus. :it corresponding points (u,  X) and (7, 6 ) ,  the 
velocit,.v potential (eq. (66)) has the same value 
arid the potential distribution along the length of 
tiny c.ircd:ir ~c with specified 6 bec.ornes known. 
From equ:ition ( 5 3 ) ,  the circulation distribution 
r/ro ('2111 be determined. Figure 16 shows the 
nondirnensional circulation distribution 11s deter- 
mined by this procedure for four ~ c s  of different 
ctiiiil)er, p=0, 0.4, 0.6, and 0.8. 

From such plots, the efficiency f:L(Ltor k ctin be 
cleterniiried bj- equation (50). The value of the 
fsctor 

is given by the transformation for the point 
z '= i (  2 ,  n 2 - / 2 ) ,  and the integral 

I" tl-y . ro 

mny be determined graphically or mulyticti11y 
froin the po t en tial distribution. 

The only remaining unknown in equation (50)  
is the factor +. Sirice, by definition, 

+- b 
b' 

the value of + depends upon the sp:in b of the flat 
elliptically loaded line to which the circular-arc 
segnient of projected spun b' is being cornpared. 
The actual significtincse of this factor is discussed 
subseque~itly; but for the present, + is ;issigned 
the value 1.0. This value of +, of course, nietins 
that the circdur arc is being compared with the 
flat line liiiving nn equal span and producing 
equal lift. 

The variation of the efficiency factor k with the 
spnriwise c:trnber factor p has been determined for 
the entire farnilyof circular-arc segments (0 sp 5 I), 
and is presented in figure 17 for the case # = l . O .  
The efficiency of the circular arc is seen to increase 
continuously with spnnwise camber, reaching a 
maxirnuni viilue of 1 .SO when tlie arc becomes a 
semickcle (p= 1 .O). For this case, the effective 
aspect ratio of the arc is 50 percent greater than 

FIGURE 16.-The optimum noiidimelisiorial circrilation distribution for scvciral nwmhers of the family of circular-arc 
segments. 
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~ ? I G ~ T R E  17.-Tli(. variation of tho cficivtiey factor with 
tliv c:itiiiwr factor for the family of circiil:ir-:ire sc,gnic.nts. 

i *= 1.0. 

the geoliietric;rl aspect ratio of the elliptical-plan- 
foriii wing of equal span (b=b').  Thus the opti- 
tiidly loaded tire having i t  ciuiiber fwtor of 1.0 
will have 33.3 percent less inducwl drag than the 
flirt. elliptic.al-pluriform wing prodwing the same 
t o t d  lift force. The efic.iencJ- giiiri for snitill 
;mounts  of camber is initially siiiirll, reaching a 
k vdue of only 1.05 a t  p=0.:3lS. The relative 
curvirture for vttrious amounts of (-:iiiiber is indi- 
t*atetl i n  figure 18. 

From the results of figure 17, it appears that 
very sizable gains in induced-drtlg effic4eiic.j- are 
~lero(l~-ti~riiii(~~rll~- possible wit11 tlie use or circular- 
nrc caurvriture of tlie span, provided, of course, the 
s p m  is optimally loaded. 

It (*;in be shown that the curve of figure 17 is 
actudly 21 brtrti(2h segriierit of the pctrabolw 

IC= 1 .00+ 0 . 5 0 p  (73) 

for O sp 5 I ,  for the case where *= 1 .O. For other 
values of #, equation (73) becomes 

(74) 

Complete ellipses.-A particularly in trrwting 
case of lifting w c s  is obtained whcti tlie arc is 
extentled to form R closed loop or curve. Ex- 
amples are circles, ellipses, ovds,  and rcctctrigles. 
Such forms me capable of attaining very liigtl 
values of k, muc.li larger than those possible witti 
arc segments of moderate curvature. 0 1 1  ttie 
other titirid, however, the phj-sicd s?-stem needed 
to obtain the circwlation distribution for minimum 
drag is much more complex. 

As i r n  extension of theorem 2 ,  it is showti iii 
reference 2 that the condition for minimum iri- 
ducetl tlrwg O N  closed lifting curve is that the 
circulation distribution d r / d s  be such thitt the 
wake intluc*etl velocity is constant itritl equal to 
W, (far tlowiistream) a t  all points of the area 
enclosed bj- the vortex wake. 'I'hus, the air 
passing through tlie lifting curve in t tie three- 
tlimensiontrl flow will be enclosed by tlie vortex 
sheet arid will move downward with the velocity 
w, far downstream. In the plane contttiniiig the 
closed lifting (wve ,  the induced velocitj- at all 
points within the boundary area is given by 

(75) 

\Then ttie uniform flow -w, is imposetl on the 
wake flow, the entire wake "body" will be brought 
to rest and the resulting steady poteritittl flow will 
yield the desired potential distribution a t  the 
lifting (XI rve. 

Tlle Joukowski transformation (eq. ( 5 6 ) )  will 
map tlie circle ] { ] = a  into an ellipse, in the 2'- 

plane, whose eccentricity is given by 

and whose major- and minor-axis lerigt tis are, 
respectively, 

a2+ 1 2  2 -  a (77) 

(78)  
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Let a=llh, where h is a constant for a given 
ellipse. The eccentricity then becomes, from 
equation (76), 

(79) 

From t,he definition of the eccentricity, it  follows 
that 

(80) 
1 b' 5 2 e = l  

since the distance from the origin to a focus of the 
ellipse is 21. Thus the radius u is given as a func- 
tion of h by 

By use of tlie nondimensional variables 

E 
6'12 

,-J=- 

U 1 
b'/2=(1$-hz) 

the equation of the circle in the {-plane becomes 

1 for t'he range - __ 
(l+hZ) (T (A!). 

The velocity potential of the {-plane flow is 
obtained from an expansion of equation ( 6 2 )  
yielding 

The points (y,z) in the 2'-plane corresponding to 
the points ( i , ~ )  in the [-plane are given in non- 
dimensional form by the relations 

At corresponding points (as given by eqs. (85) 
and (86)), therefore, the value of cp (eq. (84)) is 

the same and the potential distribution around 
tlie ellipse is established. 

In  general, i t  is more convenient to describe 
the shape of the ellipse in terms of a "camber" 
factor /?, the same as was done for the circular arcs. 
Thus the camber of the ellipse is given by 

Minor 
@=&I aj or axis 

The camber is an elliptical function of the ec- 
centricity, and is plotted in figure 19. Equation 
(79), therefore, determines h as a function of p. 

The circulation distribution - (7) is obtained 
r 
r o  

by the relation 

as shown in figure 20.  The value of rjr, as a 
function of is presented in figure 21 for the range 
@ = O  to 1.0. The case /?=O gives the elliptical 
distribution of the straight line. The case @=1 
gives the distribution for the full circle. The 
intermediate cases o</?<l apply to ellipses. It 
thus appears that the elliptical distribution applies 
to all complete ellipse forms including the special 
limiting cases of the line and circle. The effi- 
ciency factor k for the family of ellipses 0 s p 6 1  
has been determined by conformal mapping and is 
presented in figure 22 as a function of the camber. 
Here again, the value of J ,  has been taken as 1.0 
in equation (50). The efficiency factor is ob- 
viously a linear function of the ellipse camber, 
and  reaches a maximum value of 2.0 for the circle 
form (/?=I.()). This value of k indicates that the 
lifting circle, or annular airfoil, his an effective 
aspect ratio 100 percent greater than the flat 
elliptical wing having equal span and producaing 
equal lift. This particular result has long been 
known, and the possibilities of realizing such 
efficiency increases have prompted considerable 
work on ring-wing lifting systems (refs. 5 and 6, 
for example). 

The efficiency factor for the faniily of ellipses 
can be expressed in terms of @ by the relation 

i C = / , + ;  (89) 

for 0 5 p j 1 . 0 ,  for the case where +=l.O. For 
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FIGURE 10.-The variation of ellipse eccentricity u-ith the camber factor. 

SOLUTIONS B Y  ELECTRICAL ANALOGY 
r - .  

When an electrical current is passed through ti 

flow), it can be shown that the resulting distri- 
butiori of electrical potential E must satisfy 

kk- r =  (pp-vpDp’) 
\ 

I Y 
f 

, uniformly conducting sheet (two-dimensional 

.-/’ 

discussed which allows accurate determination of 
the k value for any arbitrary lifting system by use 
of a simple electrical analogy. 

tion 
(9W 

there exist the following direct analogies between 
the fluid wild electrical flows: 

The considerations of this section have been 
limited to the calculation of the efficiency of lifting 
circular arcs and full ellipses by conformal trans- , 

Fluid Regime Electrical Regime formation techniques. These forms are by no 
means the only ones solvable by conformal map- 

i 
ping, but tire appropriate ~ R S P S  for illiistrating the g e 

procedure. I n  general, however, it  is quite d8i-  

give tlie desired 2’-plane flow. A rriethod is now g= --VP €=--E (93) 

p=s’g.  d s  E = J S e .  d s  
cult to determine the transformation which will 
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FIGKRE 21.-The optimum nondiiiiensional circulation loading for closed ellipses. 0 $ p  5 1.0, 

FIGURE 22.-The variation of the efficiency factor with 
the camber factor for the faniily of closed vllipses. 
$ = l . O .  

where 

E electric potential 
E electric intensity vector 

Application of the equation of continuity to each 
system leads directly to equations (91) and (92) 

div q = V  . V q = V 2 p = 0  (94) 

div E = V .  VE=V2E=0 (95) 

Thus, the equipotential lines p= Constant in 
fluid flow correspond directly to the equipotential 
lines E= Constant in electrical flow, when identical 
boundary conditions exist. 

Analogy between aerodynamic and electric pa- 
rameters.-It has been previously shown that in 
order to determine the value of k the dimensionless 
constant K has to be determined for the flow about 
the given boundary form (representing the lifting 
system), where 

The electrical analog of this equation is 

where A E  is the potential difference equivalent to 
rp  (see eq. ( 5 3 ) ) ,  ( A E ) o  is the potential difference 

across the boundary center (3 r,), and 

the change in potential per unit length in the 
direction of the uniform current a t  infinity. 

Since K and K, are both dimensionless con- 
stants, they must have the same numerical value 
for geometrically similar flows (equivalent bound- 
ary conditions). This fact tdlou~s the experi- 
mental determination of the value of K for any 

((3 is 
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K ,  (theo- 
retical) 

potential flow regime. I n  order to construct the 
analogous electrical flow, a sheet of uniformly 
conducting material is mounted between two 
parallel electrodes as shown in figure 23(a). The 
form or boundary representing the lifting system 
is then cut into the conducting sheet, the size of 
this boundary being small compared with the 
dimensions of the sheet so that the flow near the 
outer boundaries of the sheet will be undisturbed 
(fig. 23(b)). The cut representing the lifting 
system causes the current flow to satisfy the 
same boundary conditions as in the fluid regime 
(velocity normal to the boundary is O), and the 

values of AE, (AE)o, and ?;)= may be read 

directly with a voltmeter. Thus, K, can be 
evaluated by use of equation (97), and since the 
values of K and K, are the same, the value of K 
(eq. (96)) is obtained. 

The various operational details of the electrical 
analog system are not discussed here, as consid- 
erable information has previously been published 
on the practical problems attending the use of 
such devices for other types of potential flow 
studies. In  general, the primary problem associ- 
ated with the use of the analog is finding a 
perfectly uniformly conducting sheet material. 
There exists, however, a particularly convenient 
material for such applications as the present one 
in the form of a special conducting paper.’ This 
material was used for all analog studies reported 
in this paper. The specific analog setup used in 
this investigation is pictured in figure 23(c) and 
was especially developed for these tests. 

As an indication of the accuracy which can be 
achieved with the analog system pictured in 

as meas- figure 23(c), the distributions for __ 

ured for the cases of a flat lifting line, a semicircle, 
and a full circle are presented in figure 24, where 
they are conipared with the theoretical distribu- 
tions as obtained by conformal transformations. 
The excellent agreement is obvious. The values 
of K, as determined for these three fornis are 
as follows: 

AE 
!AE) 0 

Percent 
error 

1 Information on this material can be obtained from the paper “Analog 
Field Mapping on ‘Teledeltos’ Recording Paper.” Copies of this paper 
may be obtained from the Western Union Telegraph Company, Marketing 
Department, Qovernment and Contract Sales, 60 Hudson St., New York 13, 
N.Y. 

3. 14 
4. 7 2  
6. 28 

(:t) Tlw t:iblv with conducting sheet. 

+ l .  9 
+2. 3 
+2. 2 

FIGURE 23.-The electrical analog system used t o  deter- 
mint, the optimum circulation distributions. 

Line_ _ _ _ _ _ _ _ _ _ _  
Semicircle- . . -. 
Fill1 circle- ~ - -. 

( 1 ) )  Ttw conductiiig s h ~ t  with a circular boundary. 

FIGURE 23.-Continued. 

3. 20 
4. 83 
6. 42 

In  general, the accuracy of the values of K de- 
termined by the analog, for all forms discussed in 
this report, is believed to be within -1.0 percent 
to 3.0 percent of the true value. A positive error 
in K,, or K ,  has the effect of making the associa.ted 
value of the factor k smaller than the true value. 

Semiellipse arcs.-The efficiency factor k has 
been determined for the family of semiellipse arcs 
by use of the analog method. To determine the 
value of K,, a given arc (corresponding to a given 
value of 0, the camber factor) wasplotted on the 
conducting paper. A very narrow slit was then 
cut along the arc to form the electrical boundary. 
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(c) Thc, ent  irc. arinlog system. 

FIGURE 23.-Concluded. 

0 .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 
Y 

(a) Line. 

(b) Semicircle. 

(c) Circle. 

FIGURE 24.-Comparison of the experimental analog 
readings with theoretical predictions. 

The arcs were all constructed to the same scale 
with a constant semispan length of 2 inches. The 
potential difference was then determined for 11 

equally spaced points across the semispan (in- 
cluding the origin) by use of finely pointed probes 
attached to a highly sensitive electron-tube volt- 
meter. 

Figure 25(a) shows the plot of an arbitrary arc 
form from which the boundary line is cut. The 
slit used to represent the lifting arc line necessarily 
has some finite width, and while measurement of 
the potential difference is relatively simple for 
flat portions of the curves (fig. 25(b)) some 
question arises as to the proper position of the 
probes when measurements are made along the 
highly curved portions (fig. 25(c)). Theoretically, 
the measurements are to be made at a point, 
but physically, the measurements must be made 
a t  two separate points, one on each side of the slit. 
When the slit has appreciable curvature, the two 
points on the intersecting ordinate may become 
widely separated, as shown in figure 25(c). The 
proper position of the probes in this case is de- 
termined bv the fact that the equipotential lines 
must be normal to the boundary in the immediate 
vicinity of the boundary. Thus, if a t  a given 
spanwise point where AE is to be read, a normal 
line to the curve is constructed through the point 
before the boundary slit is cut, the potential lines 
which would end on this point will lie along this 
normal line in the vicinity of the slit. The probes 
must, therefore, be placed not a t  points lying on 
the line y=Constant, but a t  the intersection 
points of the normal line with the edges of the 
slit (fig. 26). The smaller the slit can be made, 
the less will be the error incurred by using points 
on the line y=Constant, of course. All points 
were measured along normal lines in this investi- 
gation, even though all slits were very narrow 
(0.02 inch in width). 

The value of K was determined by integration 
of the potential difference distribution 

and by using the measured values of 

and (AE) , .  In  practice, (x) was taken as the 
dE 

voltage difl 
distance (2, 
of the elect 
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I 
1 1 '  Y 

(a ) 

I Y  

I 

Measurement 
point 

( C )  

Y 

(a) Arbitrary arc form. 

(b) Flat portion of slit. 

(c) Highly curved portion of slit. 

FKCRF, 25.-The analog form prc,paratioit. 

The value of k as a function of the caiuber p is 
presented in figure 27 for the faniily of semiellipses 
0 6 @  S 1, $= 1.0. The value of k reaches a niasi- 
liiuni of 1.5  nt P=l .O,  which corresponds, of 
course, to the previously discussed case of the 
seinicircle. 'I'h semiellipse arcs are considerably 
more efficient than the circular arcs of' equal span. 

:.Equipotential lines 

\ 

FIGITRIC 26.-Illiistr:1tioii of tlw nicthod iiwd to  deterrnitic 
the  potcsnti;il distributiorr 011 analog forms. 

I .5 

I .4 

I .3 

k 1.2 

I .I 

'-O .9 0 - .I .2 .3 .4 .5 .6 .7 .8 .9 1.0 

B 

FIGURE Z-Thr variation of the efficivtrcy factor of 
scmirllipse :trcs v,ith the citrnbcr factor. += 1.0. 

This fact is slio\\-n in figure 27 where the circular- 
arc efficiency is entered tis a dashed curve. The 
superior efficiency of the semiellipse arcs may have 
been intuitively expected since the semiellipse arcs 
are less curved over the central portion where tho 
aerod~-naniic force intensity is greatest; thus, 
niorc of this force acts to create lift than is the 
case with circular arcs. The circulation distribu- 

tiori - ( y )  is shown in figure 28 for four semiellipse 

arcs. 
While only the specific case of seriiiellipses has 

been discussed here, obviously it is possible to 
treat arcs of any shape b>- the analog method. 
For exaiiiple, fundies of arc segiiierits of ellipses, 
parabolas, hgerbolas,  and all other s~-nimetrical 
functions can be evaluated in a simple manner. 
Coniples lifting systenis niade up of a conibination 
of such arcs can be handled in the sanie manner as 
single arcs. This subject will be discussed in tho 
nest section. 

r 
r" 
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FIGURE “.--The optimum nondiiriensional circulation distribution for several semiellipse arcs. 

In  connection with the forms discussed pre- 
viously, it should be noted that the direction in 
which the arc or arc s p t e m  lifts is immaterial; 
the value of k depends only upon the curvature of 
the tirc. ‘rhus the two ideritical arcs showri in 
figure 29 have the same induced drags for the 
same lift force. In  practice, however, one orienta- 
tion ilia>- prove iiiore convenient than another for 
a specific application. The induced lift for the 
two orientations is not the same. ‘l’he induced 
lift is positive when the local aerodynaniic force 
acts towards the local center of curvature of the 
nrc nnrl negntirr when this force is directed out- 
ward froni the center of curvature. 

SOLUTIONS FOR MORE COMPLEX SYSTEMS 

L41though single arcs of moderate curvature offer 
an attractive means for increasing aerodj-namic 
efficiencj- because of their simple structural forms, 
i t  is desirable to consider more involved geonietri- 
cal arrangements so as to gain an idea of the 
relative values of effective aspect ratio obtainable 
with more complex systems. The purpose of this 
section, therefore, is to determine the efficiency 
factor for a number of such liftin? systenis and 
to draw some general conclusions as to the effects 
of geometry variation on aerodynamic efficienc-. 
In gcneral, the forms to he invcstig:nted arc such 

FIGERE 20.-Identical lifting arcs u-ith different orienta- 
tions of the lifting force. 

that they may be considered as derived from the 
basic flat span by various modifications to the 
outer or tip sections, while the flat center portion 
of the span is left unchanged. A few complex 
sj-steins will be considered in which the total span 
is altered. The term LLconiplex” as used here is 
intended to describe a lifting system made up of 
a series of superposed arcs or segments. as opposed 
to a “siniple” system consisting of a single arc or 
line. All the results of this section were obtained 
bj- use of the electrical analog. 
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TIP MODIFICATIONS 

End plates and vertical fins.-End plates and 
vertical fins located near the tips of the wing have 
long been used to increase iierodyniiniic efficiency 
a t  high lift coefficients. Three comnionly used 
configurations have been investigated by use of 
the andog, and tlie results tire shown in figure 30. 
Comparison of the values of k- for fornis A and B 
clearly shows the beneficial effec t, from an induced- 
drag standpoint, of using large end plates. Coni- 
parison of forms A and c, representing an end 
plate or tip fin and a11 inboard fin, respectively, 
shows the detrimental effect of moving tlie fin 
inboard (a decrease in k from 1.22 to 1.14). I n  

inside of the tip and, as inay have been anticipated, 
leads to increased induced drag compared with 
that a t  the tip location. Still, tlie inboard fins 
provide an increase in L/D,  over that of the flat 
elliptical wing. I n  considering iiicrenses in effec- 
tive aspect ratio, it must be retilized, of course, 
that  only increases in the factor /,/,?It are revealed. 
Since profile and parasite drag always accoiripariy 
the physical wing system, the actual gains in LiD 
must always be less than those in LID,. This 
effect will be considered in more detail in tlie next 
section. 

I n  the use of end plates or fins to increase the 
effective aspect ratio of wings, care iiiust be talien 
to see that tlie end plate or fin is tlesigned to 

, 

I such a case, much of the trailing vorticity is shed 

I I .I 5 
1.22 

I I 
Form A 

Form B I 

l 
. I5  

1.14 
I 
I 4 . 1 5 - I  

Form C 

I FIGURE 30.--Efficiency factors m d  gcsoiiwt ry of end- 
plate forms. All dimensions arc’ givvri in  fr;ictions of the 
semispan length. 

, 

operate with the optimum circulation tlistribu- 
tion if tlie ltirge viilues of k indicated in figure 30 
are to be reiilized. In the past, actual plates (no 
camber) or plain sj-nimetrical sections have often 
been used to construct end plates which merely 
served ILS simple physical barriers agilillst the 
spanwise flow. I n  order to realize tlie full iiero- 
d p a n i i c  ;dviintiiges of such devices, Iio\v~‘ver, 
care must be given to more exact design of the 
fins for optimum operational loadings. 5luc*li of 
the original experiniental data talien to evuluate 
the aerodynamic efficiency of wings with end pltltes 
are based on the use of such “shields” and are thus 
not truly indiciLtive of the results possihle with 
more carefully designed fins. 

Treatment of inmy end-plate and fin coI1figurii- 
tions by conforninl mapping techniques is ex- 
treniely difficult, even for verj- simple forins (ref. 
7). Thus the andog method provides an especially 
simple and valuiible means for analysis of such 
systems. Since many approxiniatioris usually 
must be ninde iri trenting such problems by con- 
formal imnlysis, the final accuracy of such results 
cannot ~;‘eiiei.:illy be expected to exceed that of the 
analog procedure. 

Curved tips.-A series of forms o1)ttiincd hy 
curving ori1.v tlie outer part of the span is shown 
in figure :31. In  form A tlie outhonrd quarter of 
the seniisptn consists of a circular arc, LIS shown. 
The rei~son for using such a shape is t o  move the 
tip region of the wing, where the strongest 
vorticity is shed (large d r l d s ) ,  away from the 
heavily loaded center of the span and thus reduce 
tlie downwasli a t  the center. The value of k-=1.2:3 
for this form is quite high. By adding a second 
arc AS in forin I) the increment in k- is about double 
that of the single arc. I n  closing the tip region 
bet\\-een the arcs (form C), the very high value of 
k-=1.52 is obtained. Form D has the tip curved 
into R semiellipse of eccentricity e=0.83. 

Closed-arc tips.-Ai interesting scrim of tip 
niodificatioris is that obtained by adding various 
syniriietrical closed curves a t  the wing tip, as 
shown in figure 32.  Forms A arid 13 slio\\- the 
effects of ending the span in circles of various 
sizes. These curves appear to be Iiiglily eflicierit 
in increasing the effective aspect ratio, eve11 for 
tlie sniall circle. Forms C, D, E, and 17 stlo\\- 
tips formed of closed ellipses with various orienta- 
tions. It is clear that tlie ellipses alinctl nit11 the 
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Form A 

I j7- 
I I 

.5 1.48 

I 
I \I. 

Form B 
I 

I T 
.25 1.26 

L-92 -& 
Form D 

FIGURE 31 .-Efficiency factors and geometry of curved- 
All dimensions are given in fractions of the tip forms. 

semispan length. 

major axis vertical are considerably more efficient 
in increasing the effective aspect ratio than are 
the ellipses with major axis dined with the hori- 
zontal, in accord with the principle of vorticity 
spreading. It also appears that a vertical ellipse 
with large eccentricity is more efficient than one 
with smaller eccentricity. 

It should be emphasized perhaps that the 
closed tips just discussed are not solid areas or 
bodies a t  the tip, but are formed by open areas 
bounded by a lifting line or arc. The free- 
stream air passes through the open area of these 
tips. I n  fact, the wake of these forms consists 
of the core of irrotational air which has passed 
through the tips, surrounded by the closed vortex 
sheet emanating from the boundary. This 
enclosed core of air has no circulatory motion 
within it (as opposed to the normal tip vortex) 
and transiates downward with the speed w o  normal 
to itself far downstream. 

Branched tips.-Another form of tip modifica- 
tion consists of splitting the tip section of the 

Form A 

Form B 

T 
.3 

I 
P . 5 P  1 

Form C 

3 1  .7 1 
I 1 

Form D 

25 

k 

1.31 

1.40 

1.24 

1.42 

1.44 

1.15 

FIGURE 32.-Efficiency factors and geometry of closed-arc 
All dimensions are given in fractions of the tip forms. 

semispan length. 

span into several separate brariciies or arcs, 
and may be considered as an extension of the 
curved-tip forms. Several such branched-tip 
forms are shown in figure 33.  Forms A, B, and 
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I 
'k- 

1.25 

Form A 

I 1.26 
I 

p . 5 -  
Form B 

I 1.34 

I 
Form C 

I 
I 

1.18 

Form D 

increases in effective aspect ratio, are relatively 
simple in geometry, and offer the possibility of 
aeroelastic construction, as is discussed sub- 
sequently. F o r m  D and E are composed of 
elliptical branches, and are less efficient than the 
circular forms, for the relative sizes used. Fortti 
E is the same as form D except that an outer 
boundary has been added to close the aa p s a t  
the outer extremities of the branches. Onlv a 
slight increase in efficiency is gained b\-. closing 
the gaps. This result follows from the fact that the 
vertical flow is already nearly equal to w, every- 
where in the region between the branches even 
before the closing boundary is added. 

Some ambiguity may exist as to the irianner in 
which the analog potential readings are to be 
made on such branched-tip forms. To clarify this 
point, figure 34 is presented, which shows the 
integration path used to determine the circulatiotl 
corresponding to a given spanwise station y, for 
an arbitrary branched-tip form. The electrodes 
may be placed on points 1 and 4 to obtain the 
circulation around arc segment B and then on 
points 2 and 3 for arc segment A; the total value 
of AE is the sum of all such readings. Alternately. 
readings can be inade a t  points 1 and 2 and points 

I 
Form E 

FIGURE 33.--Efficieiicy factors and geometry of branched- 
All dimcnsions are given in fractions of the t ip  forms. 

semispan lcngth. 

C are derived by using circular-arc segments and 
are constructed according to a definite pattern. 
Form A is composed of circular-arc segments in 
which the arc length of each branch is equal to a 
specified percentage of the semispan and the 
various branches are identified by their camber p 
(where p has the same definition as previously 
given for circular arcs). For form A, the arc 
length of the first branch is equal to fs the senii- 
span, while all other arcs are :i2 of the seniispan. 
Forms B and C are constructed accordiny to a 
similar rule. Such forms give relatively large 

I 

Y 

FIGCRE 3 1.-The paths of iiitclgratioii for bmriclied-tip 
forms. 
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3 and 4 sepwratelj- arrtl  the results tidded dge- 
braically. This procwlure can he follo\ved because 
of tlie condition t 1i:i t AE, *=LE, ,J+ A E ~ . ? + A & , ~  
since the change iii potential must be zero wlien 
passing around any closed circuit which does not 
include a part of the boundary slit. The sub- 
scripts represent the end points of the path as 
shown. In the case of most of the branches of 
the forms of figure 33,  tlie internal paths (such 
as between points 4 and 3 in fig. 34) have AP=O, 
and this condition indicates that the velocity 
between the branches is zero. This result may 
be regarded as an experimental proof of Munk’s 
results, which predict that the sum of the vertical 
relocity of the free-stream wake flow- -wO and 
the induced velocit\- iriside a closed lifting curve 
will be zero when the lifting curve is optiiiiall>- 
loaded (ref. 2 ) .  

TOTAL-SPAN MODIFICATIONS 

Closed semicircle.-Figure 35 (a) shows a closed 
semicircle wing. The k value for this form is 
1.50, the same as was previouslp fouiid for an 
open semicircular arc. In fact, it can be shown 
that the flow regimes for the two forms are 
practicallj- identical. This fact indicates that 
for niininiuni induced drag with the closed form, 
the flat side must retiitiin essentially unloaded. 

Semicircle with extensions.-The semicircle form 
with flat span extensions shown in figure 35(b) 
shows very little gain in effective aspect ratio 
(k= 1.07), despite tlie relatively large change iri 
geometrj- as coiiipared with the flat-span wing. 
When large end plates are added to this fonii, 
sucli as shown in figure 3 5 ( c ) ,  the value of k is 
raised to 1.30. As might be expected, closing the 
open side of this form with end plates n-as found 
to have no effect on k. 

GENERAL CONCLUSIONS 

The brief considerittions of this section indicate 
that appreciable gains in tlie effective aspect ratio 
can be obtained bF relatively iiiirior alterations to 
the tip region of flat wings for equal spans. 
Some tip alterations ctiii result in far greater 
efficiency increases than those produced b -  radi- 
cal iiiodification of the entire span. For the 
forms investigated liere, i t  appears thrrt modifica- 
tions which tend to release the major portion of 
the vorticity near the tip and over mi appreciable 
vertical area result iri tlie greatest increases in k. 
For the foriiis considered, it appears that increases 
in k of 30 to 50 percent are possible. On such 

(b)  L . 5  --4 

( C )  

(a) Closed wiiiicircle wing. 

(h) Semicircle wing with flat span extc~ii+ioris. 

(c) Sc,niicirclt, wing with fl:tt span t,xtcwsions mid erid plates. 

FIGURE 35.-~fficirlrcy factor and geometry of clowd and 
.411 dimensions are given in modified winicirclc forms. 

fractioiis of thcl semispari Iciigth. 

forms as the branched-tip series, corisiderable 
increases in k are possible by extending the arc 
lengths of the branches while the span is main- 
t ained csonstant. 

The results of this section serve to illustrate the 
variety of coniplex forms which can be treated with 
the analog. These procedures can be used not only 
to  establish the efficiency of arbitrary forms but  
also to determine the effective aspect ratio for 
wings with the span shape z(y) set by other design 
consider a tioris. 

THE INDUCED LIFT OF NONPLANAR SYSTEMS 

Cnlike flat-span wings, rionplanar wings have a 
component of induced velocitj- in the streamwise 
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direction due to the bound vorticity and, de- 
pending upon the lifting orientation of the system, 
this velocity can be beneficial in increasing the lift 
of the system for a given induced drag. While 
for most systems the magnitude of the induced 
lift is probably small, it  is possible that some 
highly curved arcs, say a semicircle, may have a 
measurable induced lift. 

THE INDUCED-LIFT INTEGRAL 

With the use of the simple arc form and defini- 
tions of figure 36, it  can be shown that the induced 
lift Li is given by the relation 

Thus, when the value of the optimum function 
r(s) has been determined by means of the fore- 
going procedures for a given arc for111 z=z(y), the 
induced lift accompanying this distribution of 
circulation can be determined by equation (99). 
The induced-drag efficiency parameter then 
becomes 

L+L, 
Di 

EFFECT OF LIFT ORIENTATION 

If the lifting arc is oriented such that the 
aerodynamic force intensity F’ is in the direction 
of the local center of curvature (fig. 29) the sign 
of L, will be positive and a gain in efficiency will 
result. If the force acts away from the center of 
curvature, the sign of I,, will be negative and a 
decrease in efficiency will result. These effects of 
bound-vorticity induction niight be classified as a 
type of “interference” effect. A practical example 
of this interference is in the location of end plates 

FIC,~ RE 3G.--CTeon~try : i r d  \(,locity rt,l:itionk for deter- 
mining the induced lift of rlonplanar systems. 

on a wing (fig. 37). If the end plate is mounted 
entirely above the wing (fig. 37(a)), a favorable 
interference should result (Lt positive). If 
mounted below (fig. 37 (b)), the interference 
should be unfavorable (L ,  negative). When 
mounted symmetrically (fig. 37(c)) there should 
be no net value for Li. 

I n  estimating efficiencies of highly curved 
simple systems and of complex systems, the effects 
of the induced lift should be considered. The 
magnitude of the effect, of course, will depend 
upon the geometry and lift intensity of the 
particular system. 

PRACTICAL APPLICATION CONSIDERATIONS 

As has already been pointed out, successful 
practical application of nonpltinar wing forms for 
improving aerodynainic efficiency depends entirely 
upon the ability to construct such wings with a 
sufficiently low structural weight and profile 
drag. The nature of the structural-aerodynamic 
interrelations can be seen from the following 
considerations. If it is assumed that an 

U 

(C) 

(a) Eiid plates mounted eiitirrly abole ning. 

(bj End p h t e b  iiiuuiiieil ciiliicij ’Uciun niiig. 

(c) End platcs mouiitcd synimctrically. 

F I I , ~  IW. 3i.-Tiiterfereiice (iiitluccd l i f t )  cffc*ctk ucciirring 
with end plate.;. 
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“optimum” flat wing of span b and area S has 
already been chosen for a particular set of mission 
requirements, it  is desirable to examine various 
nonplanar forms to see whether the basic wing 
efficiency can be improved. For illustration 
purposes, the nonplanar form is takcn in the 
following discussion as the semiellipse shown in 
figure 38. If the wing area S of the given flat 
wing is used as the basis for defining the force 
coefficients of the cambered wing, the induced- 
drag polar of the nonplanar form is given by 
equation (48) 

where K is an absolute constant which depends 
only upon the camber factor p of the arc (for the 
optimum circulation loading) and + is the span 
comparison ratio which gives the length of the 
projected span b‘ of the curved wing in terms of 
the span b of the flat wing, b’=b/+ (eq. (46)). 
The factor + clearly indicates the actual physical 
size of the curved wing in relation to that of the 
Bat wing. Thus, the induced-drag efficiency of 
the curved wing, k=K/a+2, is a function of its 
physical span length b’ (fig. 38). 

However, the structural weight and profile 
drag of the curved wing are also functions of its 
physical size. If the case where b’=b is considered 
(i.e., +=Id), it is evident that the physicitl arc 

I- 
I b1 
I 

(a) I 

(a) Flat span elliptical planform. 

(b) Elliptically cambered span. 

FIGURE 38.-Comparison of a flat elliptical-planform span 
with an rllipticnlly camberrd span. 

span length sT of the curved wing, where 

is always greater than that of the flat wing span b, 
Or 

Sr>b’=b (+=l .O)  (102) 

This increase in physical length must be considered 
in terms of the structural weight of the wing as 
compared with the weight of the flat wing. I n  
addition, the greater arc length must be considered 
in terms of the total surface area of the structure 
exposed to skin friction and pressure drags. 
Neither of these factors can be allowed to be signif?- 
cantly greater than those of the flat wing since 
any increase a t  all proportionately detracts from 
the gains due to the higher effective aspect ratio. 
If b’ is decreased (Le., + made greater than l . O ) ,  
the physical size of the curved wing decreases; 
thus both the structural weight and profile drag 
are reduced. Simultaneously, however, the in- 
duced drag of the wing increases, since the 
effective aspect ratio of the wing decreases. 
(See eq. (48).) Thus, by expressing the wing 
structural weight and profile-drag coefficient as 
functions of $, the optimum span of the curved 
wing corresponding to minimum total drag for 
a specified lift force can be determined. This 
minimum drag can then be compared with that 
of the flat wing a t  design lift and the relative 
efficiencies of the two forms evaluated. 

The successful working out of these problems 
depends entirely upon the availability of efficient 
structural techniques, and since the nature of 
the design compromiscs ncccssary will depeiitl en- 
tirely upon the mission requirements of the par- 
ticular aircraft under consideration, no general 
statements can be made on the net gains in 
efficiency possible with cambered-span airfoils. 
There are, however, two immediate approaches 
to the weight and profile-drag problems which ma37 
be of fttirly general applicability. 

The first approach involves aeroelastic wing 
construction in which the desired spanwise 
camber z(y) of the wing is obtained by the 
“designed” elastic deformation of the span under 
the optimum airload of the cruise flight conditions. 
That is, a considerable reduction in wing weight 
might be attained by making the wing sufficiently 
elastic that  the span will assume the desired 
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curvature under the loading condition of cruise 
flight. Since the bending-moment distribution 
along the span of 11 wing (together with the shear) 
determines the necessary section rnoment-of- 
inertia distribution 1 ( y ) ,  it follows from tlie 
briidin#-inoment relation for large curvatures 

that the wiiig moment-of-inertia 
I ( y )  (and hence the weight per unit 
be made very sriiall if the curvature 
loading 

1103) 

distribution 
of span) can 
under design 

is sufficieiitly large. Thus, for certain camber 
functions z(y), the weight of an elastic-span wing 
possibly can be made equal to or less than that of 
the equivalent flat-span wing (where the curvature 
parameter is very small under flight air loads). 
I n  addition, certain cambered wing forms offer 
the possibility of siniple bracing methods which 
can result in very light structural weights. 

The second approach involves the use of 
laminar-flow airfoil sections to reduce the total 
skin-friction drag. Certain laminar-flow profiles 
(such as the WACA 643-618 airfoil) have an 
extensive lorn-drag lift-coefficient range arid a very 
high thickness ratio. Since the drag coefficient is 
practically indepcndent of lift coefficient for such 
profiles, even up to very high CL values ( CL=l. I ) ,  
use of these sections operating a t  a relatively high 
section lift coefficient can reduce the local chord 
length and thus produce the required lift with a 
decrease in total profile drag and structural 
weight. The chord size reduction is limited by 
the niasirnuin wing lift coefficient desired. This 
method rippenrs highly suitable, however, for 
those sections of highly curved spans which 
produce primarily side force. The tliickness of 
these profiles is especidj- valuable in providing 
sufficient depth for housing wing spars. I n  the 
application of such profiles to cambered-span 
wings, due consideration, of course, must be 
given to tlie effect of span curvature on the 
stability of the laiiiinar boundary-lt~yer flow. 

In general, nonplanr~r wings will be designed to 
possess the optimum span lotiding for the cruise 
flight condition, and a t  other angles of attack tlie 
efficiency must decrease if tlie wing structure is 
rigid or fixed, because of the changes which occur 
in local angle of attiicli with nonpltinar wings as tlie 
whole wing is pitc.hed. With variable geometry 
or elastic spans, however, it may be possible to 
maintain optimum loadings over a considerable 
lift-coefficient range. The design of nonplanar 
wings for optimum span loading a t  given cruise 
conditions is relatively simple, since the effective 
downwash a t  each point of the span can be directly 
determined by use of the foregoing theory. 

Aside from efficiency gains, there are other 
possible advantages offered by nonplanar wings 
for specific applications. For example, the verti- 
cal arrangement of the lifting elements offers the 
possibility of obtaining longitudinal stability and 
control without the need for a tail plane. Such 
systems also offer a wider latitude in lateral and 
directional control than do flat wings. When 
conventional tail-plane control is used, the spread- 
ing of the vortex wake by use of nonplanar wings, 
combined with the lower wake downwash velocities 
of these systems, can offer possible solutions to 
high-lift stability ant1 control problems. 

The foregoing procedures can also be used to 
investigate a number of other important problems 
in aircraft design. When large amounts of geo- 
metrical dihedral, or anhetlral, are required in 
wings for proper lnternl static and dynamic 
stlibility cliaracteristics, the wing span loading 
necessary for miriimiim induced drag can be tleter- 
mined with dihedral effects included. The proper 
span loading of s p e c d  wing forms such :LS gull 
and inverted-gull wings can be determined in a 
simple manner. Finally, since the entire flow 
field of the vortex wake is given b>- either tlie 
conformal or analog method, the “downwash” 
field necessary for longitudinal stability analyses 
on suc*li wings can be calculated. 

CONCLUDING REMARKS 

The intention of this iilvestigstioil litis been to 
outliiie tlie basic theoretical concepts and proce- 
dures riecesstirj- for determining the induced lift 
anti the minimum induced drag for arbitrary 
iionplantu- lifting systems. l‘he results have 
slio1r~1 that i t  is possible to tlesc.ribe the incluced- 
drag efficiency of such systems in terms of a11 
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effective aspect ratio, and that this aspect ratio 
can be simply determined even for complex 
systems by use of the electrical potential-flow 
analog. The theory also provides the downwash 
field information necessary for designing physical 
wing systems which will possess minimum induced 
drag for a given lift force. 

Application of the theoretical results to the 
prediction of the effective aspect ratio of a number 
of simple arid complex lifting svstems of equal 
spans has indicated that significant reductions in 
induced drag can be obtained by use of nonplanar 
lifting forms. I t  appears that cambered-span 
wings can increase the effective aspect ratio as 
much as 50 percent compared with the flat, 
elliptical-planform wing having equal span and 
producing equal lift, but the overall efficiency 
increase depends also upon the structural weight 
and profile drag of the cambered forms. 

A brief analysis of the problems and require- 
ments which must be satisfied for successful prac- 
tical application of nonplanar wings has indicated 
that in many cases structural considerations will 
most probably govern the magnitude of the 
efficiency improvement which can be actually 
realized. 

Various methods for overcoming the weight and 
profile-drag problems which may be expected with 
some of the forms investigated appear feasible in 
the light of advances in aeroelasticity technology 
and in low-drag wing profile developments. 
Wings with a designed aeroelastic deformation 
program can probably result in the realization of a 
significant part of the theoretically possible gains 
in aerodynamic efficiency. 

LAXGLEY RESEARCH CENTER, 
NATIONAL AERONAUTICS A N D  SPACE ADMIUISTRATION, 

LANGLEY STATIO\, ITAMPTOR., VA., February 21, 1962. 
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